【摘 要】
:
随着汽车保有量的大幅提升,汽车的安全性问题成为越来越多人关注的焦点。汽车高级驾驶辅助系统的出现为汽车安全性问题提供了解决思路。本着低成本、高集成的原则,本文以单目视觉传感器为基础,将车道线检测系统与车道偏离预警系统相融合,设计了车道线检测功能与偏离预警决策功能于一体的车道偏离预警系统,以期更好地实现汽车偏离时的提前预警达到辅助驾驶的目的。本文首先进行摄像机标定,并对汽车驾驶视频流以符合人眼刷新的频
论文部分内容阅读
随着汽车保有量的大幅提升,汽车的安全性问题成为越来越多人关注的焦点。汽车高级驾驶辅助系统的出现为汽车安全性问题提供了解决思路。本着低成本、高集成的原则,本文以单目视觉传感器为基础,将车道线检测系统与车道偏离预警系统相融合,设计了车道线检测功能与偏离预警决策功能于一体的车道偏离预警系统,以期更好地实现汽车偏离时的提前预警达到辅助驾驶的目的。本文首先进行摄像机标定,并对汽车驾驶视频流以符合人眼刷新的频率进行视频帧的截取,再对每一帧预处理后的图像进行车道线的检测和可视化输出,同时通过对提取到的车道线像素位置信息进行像素级分析并结合Kalman滤波进行状态预测,最后通过改进的基于驾驶习惯统计模型与TLC算法的车道偏离预警算法进行分级预警决策。主要内容如下:(1)提出改进的适用于车道线边缘检测的融合算法对预处理过程进行优化,依据车道线连通性的特点改进的边缘检测算法,能更好地突出车道线的像素强连通性的特征,为车道线检测提供更好的预处理图像作为输入。(2)通过对车道线检测算法及车道线在图像中表现出的特点进行研究,提出改进的基于双滑动窗口机制的车道线检测算法。该算法采用窗口机制进行车道线的搜索,并对窗口滑动方式进行改进,采用重叠式滑动机制对车道图像进行车道线搜索,充分利用像素信息。(3)考虑到驾驶员不同驾驶习惯导致对危险情况感知程度的不同,本文提出一种基于概率统计模型的TLC车道偏离预警算法。该算法引入概率统计模型和分级预警机制实现偏离预警决策模型的改进,通过TLC算法对Kalman预测的车辆状态信息进行偏离压线时间的预算,并根据预估偏离压线时间在基于概率统计模型和分级预警机制的偏离预警决策模型中的表现,进行有效分级预警。实验结果表明,本文提出的改进的车道偏离预警技术中的部分相关算法对比改进前的算法均有一定程度的性能提升。提出改进的适用于车道线边缘检测的融合算法能够更好地表现出车道线的边缘特征;提出改进的基于双滑动窗口机制的车道线检测算法能够提高图像中车道信息的利用率,一定程度上避免了信息丢失问题导致的误检;提出一种基于概率统计模型的TLC车道偏离预警算法,能够实现对不同驾驶习惯的分级预警。以上改进算法在车道线检测及偏离预警场景下均有较好的表现,有效地提高了算法的准确率。
其他文献
因果关系抽取是自然语言处理的一个重要研究方向,现有研究将因果关系抽取转化为关系分类或序列标注任务。文本中的因果关系有丰富的表达形式,对于句中的复杂因果关系和文章级因果关系,现有方法很难有效的抽取。此外,这些研究大多忽视了对因果实体间的语义关联信息的探索。针对上述问题,本文引入语义依存分析和预训练语言模型,结合深度学习的相关算法,提出了两个因果抽取模型,有效的从文本中抽取各类因果关系。具体内容如下:
随着二十一世纪互联网和信息技术的高速发展,技术论坛成为人们获取计算机专业知识的关键平台。人们通过技术论坛发表自己的原创文章,获取自己喜欢的专业领域内容,同时与业界专家互动交流专业领域问题,从而提高自己的专业技能。技术论坛主要发表大量的技术文章或提问,用户通过回帖来表达自己的观点。以往的论坛大多为综合性论坛,其广度的优点不能对每一个专题做到精益求精,提供了大量的内容却未对其进行有效搜索和推荐,导致用
语文学科教学除了要帮助学生掌握语文知识,还要提高学生的道德修养,提升他们的文化品位,使他们形成健全的人格。在高中语文教学中融入传统文化,能够促进教学任务的完成,带给学生更多启迪。本文将针对如何在高中语文教学中融入传统文化展开具体分析,旨在以文化为载体,提高课堂教学质量,营造良好的育人环境。
目的:椎动脉优势(vertebral artery dominance,VAD)是指双侧VA一侧管径较大或双侧管径相等时一侧VA与BA呈直线形连接的血管变异现象。人群中35.5-58%的人为左侧VAD,右侧VAD为19-35.7%[8,9]。现阶段研究认为VAD可能是PCI的危险因素[10]。与前循环缺血相比,后循环缺血患者发现椎动脉管径不对称的发生率更高,并与基底动脉(Basilar Arter
“逆城市化”是城市发展的一个阶段,准确把握中外“逆城市化”的研究热点及演进趋势,对于“十四五”阶段城市提质增效、乡村全面振兴具有重要意义。文章利用CiteSpace可视化分析软件,对1980-2020年的1 112篇中外文献进行了定量分析。研究结果表明,国外的“逆城市化”多为“单轨”运行制,而中国则为“双轨”并行制。从研究热点来看,国内对“逆城市化”的研究主要围绕城市发展阶段、人口流动、现象的总结
以社交网络为代表的大规模信息网络层出不穷,如何充分利用这些信息挖掘出适应于各种任务的通用表示显得尤为重要。现实生活中的大规模信息网络往往包含许多复杂的交互关系和语义信息,且具有多源异质性,这给传统的网络表示学习(Network Representation Learning)方法带来了挑战。深度学习的出现给网络表示学习开辟了新道路,极大的促进了网络节点表示学习研究的发展。本文基于图注意力机制和生成
智慧司法概念的提出及司法公开平台的建设,促进了司法领域信息化进程的发展。随着以裁判文书为代表的司法大数据不断公开、人工智能技术不断突破,在司法人员处理案件效率的环节,通过人工智能技术有效使用海量数据解决司法问题逐渐成为法律智能研究的热点。目前,在智慧司法方面的研究主要集中于法律判决预测、相似案例匹配、法律问题解答等,争议焦点识别作为司法领域中的一项基础任务,对于庭审质量、审判效率的提高具有重要意义
在数字化时代新趋势下,传媒通信等主要领域信息达到了极速的传播推广,掀起了社交网络的浪潮。用户在各大网络平台快速的收集翻阅信息,如社交网络微博、知乎论坛、以及豆瓣影评等。这类文本内容精简多样,但蕴含着用户的潜在需求、兴趣方向和行为意图等丰富的信息。如何处理短文本信息将其归纳整理提取有价值的知识为人们所用,一直深受研究者的关注。对比于长文本,短文本自身具有的特征过于稀疏,内容短少且对上下文语义具有较强
随着21世纪互联网的迅猛发展,web应用程序和APP的产品数量呈现井喷式增长,成为了人们日常生活中必不可少的一部分,由此带来了巨大的市场经济效益和广阔的行业发展空间。为在激烈的市场竞争中夺得一席之地,开发者需要及时了解用户偏好,对产品进行针对性地更新以提升其产品生命力。软件评论数据是开发者获取用户需求及喜好的重要来源。目前,评论分析通常遵循“数据分类——信息抽取”的一般过程,其中评论分类是数据有效
我国经济发展进入新时代,企业成为推动经济发展的重要力量。在这种情形下,企业的发展不进则退,人才是当今企业前进的驱动因素,人力资源是各个企业争相抢夺的对象,维持并能够源源不断地吸引人才是企业能够保持长远发展的重要因素之一。本文选择研究的公司是一家2006年在深交所中小板上市的通信配套服务公司,公司得益于优秀的人力资源,上市之后不断成长,2016年国脉科技首次发布股权激励计划,现已全部完成。本文对国脉