命名数据移动自组织网络实时性能增强技术研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:linebarrel2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,移动自组织网络(Mobile Ad Hoc Networking,MANET)在军事、救援、医疗等应急场景中得到了广泛的应用,不过目前的移动自组织网络的网络性能受节点位置动态变化、链路通断频繁等因素影响,无法较好地保障上层业务及应用的实时性需求,所以研究移动自组织网络实时性能优化便显得格外有意义。命名数据网络(Named Data Networking,NDN)采用基于内容的命名、转发、路由和缓存机制颠覆了传统基于TCP/IP协议簇的计算机网络架构,具有以内容为中心、支持网内存储(in-network cache)等特点,特别适合应用于移动自组织网络。在移动自组织网络中引入命名数据网络架构将有效地解决目前移动自组织网络中由于时变性网络拓扑引起的网络服务质量不尽人意、实时性能难以保证等技术问题。论文调研了命名数据移动自组织网络转发策略的国内外发展现状,重点研究针对命名数据移动自组织网络的实时性能增强技术,利用命名数据网络协议替换传统自组织网络中的IP协议进行网络互连,并以网络实时性能增强需求为导向,针对移动自组织网络节点移动特性设计了一种基于时延感知的NDMANET包转发策略ADF(Adaptive Delay-based Forwarding),通过创建最短时延路径与备选路径的方式减少了网络中的链路中断频率,从而达到增强网络的可靠性与实时性的目的。同时,论文为了验证ADF转发策略,利用开源网络仿真框架(NS-3)和命名数据网络模拟器(ndn SIM)设计和搭建了仿真测试系统并在其上实现了所提出的ADF包转发策略,并在仿真平台通过大量实验对ADF包转发策略进行了功能验证与性能评估实验。仿真实验结果表明,在命名数据移动自组织网络中,论文提出的ADF包转发策略在请求时延与带宽使用量关键性能指标上均优于业界广泛使用的Listen First,Broad Later(LFBL)转发策略与默认洪泛(DRF)转发策略。此外,ADF包转发策略在请求成功率方面整体比默认洪泛策略高约15%。同时,论文还研究搭建了命名数据移动自组织原型演示验证系统,并在此原型系统中通过实时文件传输、音视频直播等典型时敏应用对ADF包转发策略进行了性能测试,实验结果表明ADF可有效提升命名数据移动自组织网络的实时性能。因此,本文提出的ADF转发策略可有效弥补移动自组织网络由于网络时变性而导致的实时性能欠缺,减少网络开销,提高请求成功率,从而满足复杂应用场景中各类关键应用对实时性的需求。
其他文献
在产品生产过程中,由于制造工艺简单、操作不当等因素,导致产品表面缺陷难以规避。若未能及时处理这些缺陷,将对产品的外观和功能产生重大影响。传统的人工检测依靠肉眼识别缺陷,存在速度慢、成本高的缺点。伴随图像处理、模式识别等技术的发展,基于机器视觉的自动检测已充分应用于产品质检环节。但是,针对产品表面存在的微小缺陷,机器视觉检测难以充分提取微小缺陷的特征信息,漏检现象时常发生。由于深度学习拥有自主学习特
脊柱分割是脊柱图像定量分析中的关键组成部分,一个好的椎骨分割结果有助于计算机医学辅助系统的使用,并为后续脊柱医学任务打下坚实的基础,因此研究脊柱椎骨的分割方法具有重要意义。然而传统的医学图像分割技术已经不能满足当前医学发展需求,正逐渐转向使用基于数据驱动的分割方法,其中深度学习技术就是方法之一。它从大量的医学图像中提取关键信息,最终得到准确度高于其他分割方法的结果,目前已成为主流医学图像分割方法。
在图像识别技术领域中,摄像头老化和复杂多变的外界环境等原因使得采集的图像中会参杂大量的噪声,从而导致图像识别准确率不高。然而神经网络和忆阻器的有效结合不仅可以大大改变人工智能领域的发展,也可以在有限的数据集下很好地抑制图像中含有的噪声。本文首先将忆阻器和卷积神经网络结合起来进行车辆标志图像识别,设计了一种全新的数字图像预处理算法;为了模拟真实场景中的噪声,然后基于VLR-40数据集构造四类新的数据
图神经网络(Graph Neural Network)是一种作用于图状数据结构上的深度神经网络。本质上,图神经网络通过了图节点之间的信息传递,从而捕捉到全局图的结构信息。其中,每个节点在其卷积层中聚合了来自邻居节点的特征。本文将图神经网络方法应用于计算机视觉领域中的目标检测与识别任务之中。该任务要求定位特定图片中物体的位置,并通过识别算法给出物品的类别标签。目前,常用的目标检测与识别模型往往基于卷
对话系统一直是人工智能领域研究的重点方向。智能对话系统对于未来人机交互的研究非常重要。而开放域的对话系统也已被证明在许多领域比任务型对话系统更加重要,目前,在开放域的对话方面采用较多的就是端到端的对话生成模型,但是端到端的模型具有一定的弊端,比如对话生成的结果趋于泛化,不能模拟人类对话的情绪表达,不能实现带有目的性的对话,而且在多轮对话中的话题转移性较差等等。对于端到端多轮对话系统,缺少高质量的多
人体姿态估计是从图像中预测人体关键点坐标的任务。它是一些更高级的视觉任务的基础和前提,并被广泛应用于如人机交互、监控等领域。近些年来,人体姿态估计已经成为了计算机视觉领域中一个热门的研究方向。目前研究者们已提出了一些效果良好的二维人体姿态估计算法,但是现有算法一般不能输出关键点的可见性/遮挡信息,即使利用了相关信息也仅用于帮助提高关键点预测的精度,而关键点的可见性/遮挡信息对于像行人重识别、动作识
近年来,将深度学习引入图结构数据引起了研究者的兴趣,对图形结构寻求更好的表示学习成为研究热点,其中图神经网络(GNN)被广泛应用于社会网络分析、引文网络分析、推荐系统等研究领域。虽然图神经网络领域已出现很多优秀的模型,并在解决密集型图结构数据应用上取得了很好的效果,比如链路预测、节点分类、关系抽取等。但传统的研究方法都是利用固定的学习算法从头开始求解任务,需训练大量数据才能取得理想的效果,且无法迁
位于互联网多层结构最下层的暗网,由于本身的特性使得其成为违法交易、活动的滋生地。这严重危害了网络安全,也对社会稳定和国家安全带来了极其严峻的挑战。因此,对暗网进行监测管控势在必行,但是想要获取暗网中的数据是极不容易的。基于此,本文对暗网数据难以获取的问题进行了深入研究,并设计实现了一个暗网数据获取系统。主要工作内容如下:(1)针对暗网域名难获取的问题,本文提出了包含两种优化与两种辅助在内的四种域名
零样本学习由于具有人类的“联想”能力,能够根据一些过往学习到的知识,完成对不断出现的新事物和新样本的分类。基于生成对抗网络的零样本学习方法能够从可见类样本和语义属性中训练出生成器,并通过未见类语义属性来生成未见类样本以训练传统机器学习分类器完成零样本分类。然而,由于人工语义属性的一些缺陷,导致模型所生成的样本会存在判别性不足的问题。此外,由于模型主要是在可见类样本和语义属性上学习的,模型所生成的未
随着互联网高速发展,导致了互联网新闻的急剧增加,用户如何准确且快速有效地从海量互联网媒体中获取所感兴趣的新闻,已成为急待解决的问题。传统文本检索算法仅计算检索词语和文本的相关度,根据评分排序获得检索结果,缺乏和用户历史行为的交互;同时,传统推荐算法存在人工过度干预和特征信息提取困难等缺点。因此,为了解决上述问题,本文研究了深度学习的方式应用于检索与推荐算法中。主要工作包括以下几方面:(1)在分析研