基于注意力机制和图卷积的小样本分类网络

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:xt100q
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
深度神经网络在有着大量标注数据的图像识别任务上已经占据了统治地位,但是在只有少量标注数据的数据集上训练一个好的网络仍然是一个据有挑战性的任务。如何从有限的标注数据中学习已经成为了一个有着很多应用场景的热点问题。目前有很多解决小样本分类任务的方法,但是仍然存在识别准确率低的问题,根本原因是在小样本学习中,神经网络只能接收少量有标签的数据,导致神经网络不能获取足够的用来识别的信息。因此,提出了一种基于注意力机制和图卷积网络的小样本分类模型。这个模型不仅能够更好地提取特征,而且能够充分利用提取的特征对目标
其他文献
基于网络的入侵检测技术作为一种重要的安全防护手段,对及时发现网络攻击行为起着重要的作用。目前,采用特征工程的机器学习算法是检测分析网络入侵的常用方法,但是人工设计的特征往往会丢失有效载荷的重要信息;另外,网络攻击流量中的不同数据包信息在入侵检测中所起的作用是不同的,而现有算法大都对重要信息的捕捉能力不足。针对上述问题,提出了一种新的深度学习模型L2-AMNN,无需复杂的特征工程,直接提取原始网络流量的有效载荷数据作为样本,在双向长短时记忆神经网络基础上,引入双层注意力机制,捕获关键字节信息和数据包信息,生
传统视觉方案无法应对无人机降落过程中复杂的环境变化,难以实现在机载处理器上的实时图像处理。为此,提出一种适用于无人机板载端轻量高效的Onboard-YOLO算法,使用可分离卷积代替常规卷积核提升计算速度,通过注意力机制自动学习通道特征权重提高模型准确度。在运动模糊、遮挡、目标出视野、光照、尺度变化等5种干扰环境下进行降落测试,结果表明,Onboard-YOLO可以解决降落过程中的复杂环境问题,在板
说起火山,很多人的第一印象都是巖浆喷发的恐怖场景,但位于意大利的布斯卡火山却让人们觉得十分可爱。原来,这座意大利最小的火山仅有1.2米高,看起来就好像一个火堆。但是,布斯卡火山是一个天然的气体排放口,地下涌出的氢气与氧气、火源接触后会燃烧,导致即使风吹雨打,火焰都不会熄灭。因此,这座迷你火山被人们戏称为“最适合去烧烤的地方”。
生成对抗网络的理论研究与应用不断获得成功,已经成为当前深度学习领域研究的热点之一。对生成对抗网络理论及其应用从模型的类型、评价标准和理论研究进展等方面进行系统的综述:分别分析基于显式密度和基于隐式密度的生成模型的优缺点;总结生成对抗网络的评价标准,解读各标准之间的关系,并从应用层面介绍生成对抗网络在图像及其他领域中的研究进展,即通过图像转换、图像生成、图像修复、视频生成、文本生成及图像超分辨率等的