融合知识表示和深度强化学习的知识推理方法

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:tjc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
知识推理是解决知识图谱中知识缺失问题的重要方法,针对大规模知识图谱中知识推理方法仍存在可解释性差、推理准确率和效率偏低的问题,提出了一种将知识表示和深度强化学习相结合的方法RLPTransE。利用知识表示学习方法,将知识图谱映射到含有三元组语义信息的向量空间中,并在该空间中建立强化学习环境。通过单步择优策略网络和多步推理策略网络的训练,使强化学习智能体在与环境交互过程中,高效挖掘推理规则进而完成推理。在公开数据集上的实验结果表明,相比于其他先进方法,该方法在大规模数据集推理任务中取得更好的表现。
其他文献
说起火山,很多人的第一印象都是巖浆喷发的恐怖场景,但位于意大利的布斯卡火山却让人们觉得十分可爱。原来,这座意大利最小的火山仅有1.2米高,看起来就好像一个火堆。但是,布斯卡火山是一个天然的气体排放口,地下涌出的氢气与氧气、火源接触后会燃烧,导致即使风吹雨打,火焰都不会熄灭。因此,这座迷你火山被人们戏称为“最适合去烧烤的地方”。
生成对抗网络的理论研究与应用不断获得成功,已经成为当前深度学习领域研究的热点之一。对生成对抗网络理论及其应用从模型的类型、评价标准和理论研究进展等方面进行系统的综述:分别分析基于显式密度和基于隐式密度的生成模型的优缺点;总结生成对抗网络的评价标准,解读各标准之间的关系,并从应用层面介绍生成对抗网络在图像及其他领域中的研究进展,即通过图像转换、图像生成、图像修复、视频生成、文本生成及图像超分辨率等的
深度神经网络在有着大量标注数据的图像识别任务上已经占据了统治地位,但是在只有少量标注数据的数据集上训练一个好的网络仍然是一个据有挑战性的任务。如何从有限的标注数据中学习已经成为了一个有着很多应用场景的热点问题。目前有很多解决小样本分类任务的方法,但是仍然存在识别准确率低的问题,根本原因是在小样本学习中,神经网络只能接收少量有标签的数据,导致神经网络不能获取足够的用来识别的信息。因此,提出了一种基于
“5·12”汶川大地震已经过去整整10年。在这10年间,我国的经济水平不断提高,国力日益增强,科技水平得到了极大的发展,一系列抗震救灾的先进技术和设备不断涌现。  全球领先的地震预警系统  一直以来,地震预报是世界性的未解难题。地震预警不是预报,而是在地震发生后,利用地震波与电波在传播速度上的差异来打时间差。  “ICL地震预警技术系统”(以下简称ICL)是我国首个通过科技成果鉴定的地震预警技术系