3-RPS并联机构正解及力学的研究

来源 :东北大学 | 被引量 : 0次 | 上传用户:chengwenjie123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对各种复杂零部件的抛磨,提出运用3-RPS并联机床完成零件的加工要求。虽然目前已经开发出并联机构样机,仅能够实现简单的运动,但是设计理论的研究还不够成熟。针对并联机床中存在的正解、刚度及振动等问题,以并联机床中的3-RPS并联机构为研究对象,分别进行机构正解、静力学、动力学及有限元等的理论研究。首先,针对传统的迭代求解方法因初值设置不当而引起的求解失败以及求解速度慢等问题,提出了一种新型的混合遗传算法求解并联机构运动学正解。此算法有效的结合了遗传算法的全局搜索能力和拟牛顿法局部搜索能力,能够快速收敛到精确解。算例结果及仿真验证表明,该算法通用性强、精度高、收敛性好、求解速度快。其次,为提高机构的静刚度性能,提出机构静刚度的评价指标与优化方法。基于雅克比矩阵、静刚度矩阵的条件数和全局柔度建立该机构静刚度的多目标优化函数,采用遗传算法进行机构尺寸优化来提高静刚度。算例及仿真结果表明,优化后整体静刚度在工作空间内的性能大幅度提高。然后,为建立完整的动力学的动力学模型,在考虑球铰链、转动关节及滚珠丝杠等处的摩擦和机构伴随运动的基础上,选择牛顿欧拉法为机构的动力学建模方法。给出动力学模型简化的方法,提高机构实时控制的效率。运用MATLAB及Adams仿真验证所建立动力学模型的正确性。最后,为避免共振降低振动,利用PROE建立机构的三维实体模型,通过ANSYS Workbench对机构进行有限元分析。通过静力学分析,校核机构强度并找出机构刚度薄弱环节;通过模态分析,得到机构的固有频率和振型,提出避免共振的方法;通过谐响应分析,得出机构应避免的敏感频率,确保机构能够承受不同频率的各种简谐载荷,为机构的进一步动态设计与优化奠定了理论依据。
其他文献
钛合金具有密度低、比重小,以及耐高温、无磁、可焊接等优异综合性能,被广泛应用于航空航天、机械制造等领域。但其表面硬度低、抗高温氧化及耐磨性较差,限制了其应用。通过表面改性技术在钛合金表面制备功能防护涂层成为改善钛合金表面性能的重要手段。与钛合金相比,三元层状金属陶瓷材料兼具金属和陶瓷两相优异性能,是具有极大应用潜力的防护涂层材料。本文以TiAl+TiN二元复合粉体为基础,优化粉末体系配比,采用激光
陶瓷的高硬度、高温强度和化学稳定性是陶瓷材料能成为金属切削刀具的原因,由于陶瓷刀具耐磨性好,可加工传统刀具难以加工的材料(镍基高温合金GH4169、钛合金等)。本文针对氧化锆陶瓷的硬脆特性,研究其磨削加工工艺参数的优化,从而提升延性域磨削质量,为磨制高精度氧化锆陶瓷立铣刀奠定理论基础。首先,综述了氧化锆陶瓷磨削加工研究现状,总结了自提出延性域切削加工理论模型以来,陶瓷等脆性材料的延性域切削加工理论
阴离子交换膜是碱性聚合物膜燃料电池的核心组件,其性能直接影响着燃料电池的工作效率、稳定性以及寿命。为了满足燃料电池的使用需求,阴离子交换膜须在具备较高的离子电导率的前提下,同时具有优良的尺寸稳定性、较高的机械强度以及良好的化学稳定性。目前阴离子交换膜发展中面临的主要问题是如何制备出低成本且各方面性能优良的膜材料。交联是一种能提高聚合物机械性能和化学稳定性的方法,但是通常会损失一部分电导率。所以选择
如何发挥好集体备课的优势,从而更好地赋能教师专业成长?这是当下必须直面的现实问题“。三单三备”集体备课方式是一种有效的尝试。具体而言,浙江省衢州市开化县教育局教研室从“备什么”“怎么备”两个方面入手,围绕预学单、导学单、拓学单的设计与调整,组织区域内小学中高段语文教师进行集体备课,极大地促进了教师的成长。
石英具有非磁性、材质轻、硬度高等优异性能,在半导体、光学仪器、传感器等领域具有广泛的应用前景。但石英作为一种非导电硬脆材料,基于电加工原理的电火花加工和电解加工不适用,而机械铣削加工效率低,且易造成刀具磨损、加工表面微裂纹损伤问题。放电辅助化学加工(Spark Assisted Chemical Engraving,SACE)是基于物理化学综合作用的材料蚀除过程,有望实现石英等绝缘硬脆材料的无损伤
连续流变挤压技术对晶粒细化和破碎Al-Fe合金中粗大富Fe相有显著效果,从而提高Al-Fe合金的力学性能。本文利用硬度、拉伸试验等力学性能检测手段,以及X射线衍射仪(XRD)、电子背散射衍射分析技术(EBSD)、扫描电镜(SEM)、透射电子显微镜(TEM)等微观组织分析手段,对 Al-Fe合金在连续流变挤压过程中组织与性能的演变规律进行研究,并探索其热稳定性,主要研究结果如下:(1)随着挤压道次的
钛和钛合金凭借优良的机械性能和生物相容性被广泛应用于生物医用植入材料,尤其是在人工关节和牙种植体等领域。炎症感染和骨结合强度低是临床面临的两个主要问题。铜元素作为人体必需的微量元素具有一定的抗菌能力。本课题采用Ti-3Cu合金为原材料,对其进行超声微弧氧化表面处理,形成多孔氧化物涂层,改变了铜元素分布和存在形式,不仅提高了抗菌性能,又保证了良好的细胞相容性。本文通过扫描电子显微镜、X射线衍射仪、X
肌分化因子(Myogenic Differentiation 1,MyoD1)属于生肌调节因子(MRFs)家族的成员之一,是细胞成肌分化、肌纤维形成等阶段中的重要调控因子。肌肉生长抑制素(Myostatin,MSTN)主要在骨骼肌中特异性表达,对人类和动物肌肉生长、脂肪沉积等有重要作用。DNA甲基化(DNA Methylation)为DNA的表观性遗传调控的一种形式,也是目前最早发现的一种修饰DN
钦和钛合金由于其优异的机械性能和生物相容性而被广泛用于生物医学植入领域,特别是在修复和替代材料,如人造关节和牙种植体方面。但仍有许多问题困扰着其临床应用,如感染或炎症。感染一旦发生,患者需要接受长期抗生素治疗,甚至二次手术。因此,具有较强抗菌性能的植入体在临床应用中显示出极大的潜力与市场。铸态Ti-3Cu合金具有良好的抗菌性能(>90%抗菌率),但机械性能仍有待提高。本文选择了锻造和热处理来改善T
毫米波大规模MIMO作为5G通信系统的关键技术,因其可以提升系统容量、提高频谱利用率受到广泛关注。信道估计作为反映通信质量的重要手段,其准确性影响着通信系统的性能。传统信道估计方法依赖于导频信号和信道先验统计特性,对导频要求较高。将深度学习方法应用于信道估计,无需知道系统信道特性,对系统产生数据进行学习可以有效提升估计精度,具有重要研究价值。针对采用导频的信道估计方法会导致导频开销过大和估计精度较