基于深度神经网络的OFDM信号立方度量抑制技术研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:moete
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)作为一种多载波调制技术,以其高频谱效率、对多径效应的鲁棒性、以及基于快速傅里叶变换的可实现性而备受关注,目前已经在现代通信系统中得到了广泛应用。然而,在OFDM系统中,较大的信号包络波动是其主要的缺点。由于发送端的放大器(Power Amplifier,PA)的线性范围有限,若信号峰值过高,PA对信号放大过程中会产生严重的非线性失真。这不仅会导致系统误码率增加,还会产生严重的带外泄露。立方度量(Cubic Metric,CM)是一个用来衡量包络波动的指标,抑制OFDM系统CM技术是实际应用的一个关键技术。传统抑制OFDM系统CM技术存在迭代次数多、计算复杂度高、包络抑制性能与其它性能不能兼顾的问题。为了改进上述问题,本文引入深度神经网络(Deep Neural Network,DNN)技术,提出了两种基于DNN的抑制OFDM系统CM的算法。主要内容如下:第一,提出了一种基于集成学习抑制OFDM信号CM的算法。本文利用DNN技术对简化限幅滤波(Simplified Clipping and Filtering,SCF)算法的处理过程进行模拟,避免了传统算法所需多次迭代的问题。针对该处理过程过于复杂的问题,设计了一种新的网络结构,该网络结构具有复杂度较低的特点。为进一步提升模拟的性能,利用了集成学习的方法对网络模型进行组合优化。该算法可近似实现SCF算法的抑制性能和误码性能,并且其复杂度大幅降低。第二,提出了一种基于多任务学习抑制OFDM信号CM的算法。利用DNN结合星座扩展(Active Constellation Extension,ACE)的思想,提出了基于多任务学习的神经网络结构,该模型能够综合考虑抑制性能和误码性能。将该结构进行简化,使得模型的复杂度得以降低,该模型具有更好的鲁棒性,对训练集的要求大大降低,同时具备良好的对CM的抑制效果和较低的误码率。
其他文献
目标跟踪是计算机视觉领域一个重要的研究方向,现如今其应用已经深入到人们生活中的方方面面。随着深度学习的发展,神经网络也逐渐被引入目标跟踪领域并取得了良好的效果。在实际的应用中,算法需要被部署到性能有限的嵌入式处理器上。因此如何优化跟踪算法,平衡其实时性和准确性,并将其移植到嵌入式平台实现具有重要的意义。本文以ECO跟踪算法为基础,做了一系列改进增加其跟踪的准确性。在深度特征的提取方面,对使用的神经
随着我国5G、物联网、工业互联网和数据中心方面建设需求的增加,光纤光缆作为通信网络建设的基础,成为国家经济发展的信息大动脉,为大范围环境感知和检测提供了良好的物理条件。通信光缆自身安全维护变得刻不容缓,而基于相位敏感光时域反射技术(Φ-OTDR)的分布式光纤声波传感系统(DAS)能够满足通信光缆安全监测的需求,可以实现通信光缆长距离、大范围和全天候的智能安防监测。但是,基于DAS的通信光缆安全监测
分布式声传感(Distributed Acoustic Sensing,DAS)系统建立在相敏光时域反射(Phase-sensitive Optical Time-domain Reflectometry,Φ-OTDR)技术的基础上,在长距离的安全监测中由于其独有的优势而得到了快速的应用。除了基本的检测与识别等功能外,目前的研究越来越倾向于挖掘更深层次的如位置等方面的信息来帮助做出更加准确的决策。
分布式声波传感(DAS)可以用来测量传感光纤周围环境中的许多物理量,相位敏感光时域反射仪(Φ-OTDR)作为DAS的一个主流技术,因其传感距离长、灵敏度高和良好的动态检测能力,一直备受学者关注。近年来,以超弱光纤布拉格光栅(UWFBG)阵列为传感介质的Φ-OTDR,也称为准分布式声波传感(Q-DAS),相比以单模光纤(SMF)为传感介质的普通Φ-OTDR有更高的灵敏度和信噪比,已经成为光纤传感中颇
企业的生产经营过程中会形成大量的档案,这些档案可为企业未来积累丰富的经验,具有重要意义,为此越来越多的企业开始重视档案管理工作。然而档案的保存是一个综合课题,档案的保存周期与库房的各项物理条件息息相关,若保存不当,则档案保存周期非常短,因此需要有一套行之有效的方案来实现自动化管理,基于此,中国移动自贡分公司领导提出构建远程档案库房监控系统。从中国移动自贡分公司综合部实际应用需求出发构建了库房监控系
基于相位敏感型光时域反射仪(phase-sensitive optical time domain reflectometer,Φ-OTDR)的光纤分布式声波传感(distributed acoustic sensing,DAS)技术因其传感点密集、灵敏度高、传感距离长等优势而逐渐成为新一代的声波感知技术。DAS技术利用光纤的后向瑞利散射光的相位信息,可对光纤沿线微小扰动信息进行声波信号的探测,从
基于Φ-OTDR技术的分布式光纤振动传感系统通过检测瑞利散射光信号中所携带的相位信息进行传感,用以实现高密度、长距离的分布式振动传感,目前已广泛用于石油物探、结构健康检测、管线安防等领域。Φ-OTDR系统虽可实现分布式振动探测,但相比于点式光纤地震检波器其灵敏度不高,对微弱振动信号无法有效探测,限制了其在地震勘探中的应用。本文主要研究基于Φ-OTDR系统的矢量光纤地震检波器,通过声波增敏提高系统在
随着用户数量的增加以及用户对服务质量要求的提高,基于软件定义网络(SDN)实现的网络资源管理与控制变得越来越困难。很多中心控制的网络管控问题都可以被建模成NP难的组合优化问题,在当前的设备求解能力下几乎不能在短时间内获得最优解。本文基于训练好的神经网络可快速推断这一优势,设计出了基于深度学习的网络管控问题求解框架,此框架可以学习网络管控问题历史求解经验,使用神经网络直接求解新的网络管控问题。利用此
多元时间序列预测是机器学习领域非常重要的问题,可以应用在多个领域,比如电力消耗、交通拥堵情况以及疾病预测等。随着时间维度的引入,数据的维度和规模会大大增加,因此会带来一系列问题,比如梯度消失、梯度爆炸、以及无法很好地捕捉数据短期和长期间的依赖关系等。在医学领域,急性肾损伤(Acute Kidney Injury,AKI)需要医生根据患者的历史状态进行经验性的诊断,根据患者的真实数据本文发现医生对于
基于相敏光时域反射仪(Φ-OTDR)的分布式声波传感系统(DAS)被广泛应用于安全监测。真实环境中振动源时变与干扰时刻存在,导致采集的DAS传感信号比在安静环境或实验室环境中更易出现未知畸变和冲击,这意味着实际环境中信号实际蕴含的振动模式易被其它干扰振动源的振动模式掩盖,信号特征易被其它干扰振动源的特征模糊化甚至擦除,使得时变、多振源干扰的复杂环境下振动源识别难度大,识别率亟待提高。为了解决这一问