矿井摩擦提升系统动力学建模与特性分析

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:weidaxia888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着经济和社会的发展,矿井提升机朝着高速、重载和大运程方向发展。钢丝绳作为矿井提升机的关键承载部件,高速运动中极易受外界激励和系统运动状态突变影响产生剧烈振动。随着矿井深度不断增加,提升容器在不同位置下钢丝绳长度存在差异,导致提升系统在外界激励和运动冲击作用下动力学特性更加复杂。钢丝绳在实际运行过程中纵向-横向-侧向均存在振动现象,由于弹性变形导致不同方向的振动相互耦合,使综合分析其动力学特性带来挑战。为避免钢丝绳异常振动和动张力波动加剧钢丝绳疲劳和磨损,甚至造成断绳事故,需明确提升系统运行过程中的振动机理以及钢丝绳动张力特性,并据此提出相应的振动控制方案。针对上述问题,本研究通过Hamilton原理建立摩擦提升系统在外界激励作用下的纵向-横向-侧向非线性耦合振动模型;应用Galerkin法离散振动控制方程并进行数值求解,对外界激励和运动自激作用下钢丝绳复杂动力学问题开展了研究;为验证理论模型的可靠性和有效性,设计实验方案对矿井提升机运行过程中钢丝绳末端振动响应进行了现场测试。研究结果表明:提升系统耦合振动以纵向振动为主;受外界激励影响,系统运行速度增加会导致钢丝绳横向和侧向振动更加剧烈;钢丝绳长度增加时,系统对运动状态突变产生的冲击更加敏感,更易激发剧烈的纵向振动,且阻尼衰减速率更慢;提升工况下钢丝绳靠近卷筒的部分承受更大的动张力为钢丝绳的危险截面,而下放工况下钢丝绳末端到达井底位置时振动更加剧烈,动张力峰值更大。针对研究过程中钢丝绳受运动状态突变表现出的冲击振动现象,研究了运行参数和运动轨迹对钢丝绳纵向振动和动张力影响,发现增强运动轨迹平滑性可以在保证系统运行效率前提下有效减小运动冲击。据此,提出了一种基于标准逻辑函数的轨迹优化方法,在使用更少轨迹段的同时可以规划更光滑的运动曲线,有效抑制运动状态突变产生的冲击振动以及动张力波动。考虑井深增加导致尾绳长度增加,对系统影响不可忽略,研究了尾绳振动规律及提升载荷、高度以及摩擦轮纵向激励幅值对系统纵向振动的影响。结果表明:提升绳与尾绳边界的耦合会使其振动相互影响,二者纵向振动位移特征相似;提升绳和尾绳长度是影响其振动的关键因素,钢丝绳长度较长时更易受冲击影响导致振动加剧;提升载荷、高度以及纵向激励幅值的增加均会使系统运行过程中产生更剧烈的纵向振动。本研究为矿井提升系统的相关研究提供了分析思路和理论基础,为后续进一步开展提升机工程设计、参数优化及振动控制提供理论与技术支持。
其他文献
自20世纪末,互联网在大量技术的支持下高速发展,因此用户可以共享文件、实时通信,也可以通过共享计算资源在不同的地方协作执行任务。然而不断增长的互联网资源数量导致服务会存在很多潜在攻击。其中攻击可以采取多种形式,包括对物理信息技术(Information Technology,IT)环境的攻击、利用应用程序弱点的攻击、通过第三方应用的攻击等。分布式拒绝服务(Distribute Denial of
矿井提升机作为地下矿产资源实现其经济价值的“媒介”,在开采生产中占有很重要的地位。随着我国国民经济的迅速发展,为满足高指标的生产需求,矿井提升机系统在高要求工况下的振动特性以及制动性能也备受考验,同时也给相关研究者带来了很大挑战,提升机在复杂工况下的振动特性以及制动性能成为了当前研究工作重心,但由于提升设备体积较大以及矿井环境多样复杂的客观条件限制,对矿井提升机制动特性开展现场试验的难度性比较大,
知识更新周期的缩短,需要人们不断地去学习并更新自己所掌握的知识。而工作学习节奏的加快使人们更多地选择基于计算机及互联网技术,以微博、微信、微课等为平台,不受时间和地点影响的网络学习资源。然而,工作和生活的多任务化导致的作息时间碎片化,使学习者难以抽出整段的学习时间用于学习。因此,能够利用短小的时间片断进行学习的平台成为一种需求。这一需求催生了一种新型的学习模式——微学习(Micro-Learnin
采煤机是井工煤炭生产的主要机械设备,截割部是其最重要的工作部件。由于截割部承担着破煤的任务,会与煤层直接接触,滚筒所承受的冲击载荷会剧烈波动,传动系统的关键零部件容易发生故障,而对于采煤机传动系统进行动力学分析是解决零部件故障的前提之一,但是在对以往学者的研究成果进行归纳和总结时,发现现有对截割部传动系统的研究多采用静态电机,动力学仿真中无法体现电动机的机械特性。所以,本文基于某大型交流电牵引采煤
手腕单元是机器人整体机构中必不可少的一环,手腕单元的机构性能直接影响着机器人末端执行器的性能及作业能力。针对主流电驱手腕严重依赖高精密减速器和长时间带载工作电机发热严重的问题以及煤矿井下防爆全液压机械臂的需求,本文设计了一款新型的基于液压驱动技术的运动解耦的三自由度球型手腕,然后基于此手腕做了一系列的研究。首先,根据设计要求制定了基于液压驱动的新型手腕结构方案及驱动方案,对制定的结构方案进行理论分
煤炭作为我国能源结构中的主要能源,为经济发展提供了有力的保障。带式输送机作为煤炭运输的的关键设备,其质量的优劣影响着煤矿安全和煤矿生产效率,输送带作为带式输送机承载物料的关键部件,因大块煤料冲击、矸石碰撞以及硫化接头质量问题而导致断带的事故时有发生,进而引发的更严重的次生事故。为了提高输送带接头处的硫化质量,本文采用硅橡胶加热片为输送带硫化提供热源,对输送带硫化传热过程以及硫化温度均匀性进行了分析
目前大部分的高性能气体传感器均是利用半导体金属氧化物作为气敏材料来进行研究,从而实现对毒害气体进行有效监测。而设计制备结构新颖、性能高效、成本低廉、方法简单的气敏材料是研究人员不断努力的目标。通过对金属氧化物进行掺杂、表面修饰、纳米材料改善等措施,在气敏特性的提高上已经有了较大的进展。在前人的研究基础上,本文采用水热法制备了三种纳米材料,主要包括纯的金属有机框架氧化锌(Zn O-MOF)、掺入不同
脑卒中又称“中风”,是一种常见的脑血管疾病,在我国居民中的发病率呈现逐年上升趋势。其发病快、病程急,在临床上具有高发病率、高致死率及高致残率等特点。脑卒中主要分为出血性及缺血性两种,二者发病机制不同。脑电信号(electroencephalogram,EEG)是脑神经细胞电生理活动的反映,包含人体大量生理信息,脑卒中发病前后EEG数据会呈现显著差异性,不同类型脑卒中其EEG数据也表现出不同特性,因
运煤传送带作为带式输送机的关键部件,经常会因尖锐非煤异物(如破碎的角铁、断裂的锚杆等)进入传送带而造成传送带的破损与撕裂,影响煤矿的安全生产,造成高额的经济损失。针对该问题,本文设计了一种基于深度学习的带式输送机非煤异物视频检测系统,系统以YOLOv3目标检测框架和Jetson NANO开发板为基础,以检测精度和实时速度为目标,采用Focal Loss损失函数和Cut Mix数据增强方法改进模型,
机器人已经在国防装备、航空航天、核工业等领域得到广泛应用,手腕作为机器人的重要组成部件,决定着末端执行器的姿态,手腕关节结构及控制性能的优劣直接影响手腕的灵活性和定位精度。本文的研究对象为一种液压驱动三自由度球型手腕,其俯仰和侧摆关节由单出杆液压缸驱动,自转关节由液压马达驱动,三个关节运动解耦。运用UG仿真平台对手腕进行了三维建模并进行了运动仿真,验证了手腕关节结构的可行性。基于球型手腕的空间几何