基于图注意力卷积神经网络的三维点云分割算法研究

来源 :南京信息工程大学 | 被引量 : 0次 | 上传用户:NoskyFox
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当前的点云分割方法主要分为基于多视角的方法、基于体素的方法和基于点特征的方法,以Point Net为代表的基于点特征的点云分割方法准确度通常高于多视角和体素方法。因此,本文考虑点云的点特征信息,为点云结构建模。现有的基于点特征的方法大多是通过多个多层感知机将点云映射为高维特征,并使用池化操作捕获特征,其捕获的点云特征学习过程是孤立的,通常未考虑点云间的邻域关系,损失大量的空间几何信息。不仅如此,由于点云属于欧氏空间非规则化数据,其特点无序且稀疏,基于点特征的方法往往在捕获点云局部特征方面不尽人意。为此,本文提出基于图GNN与GCN的三维点云分割算法,旨在利用图方法解决点云分割任务。随后对该算法加以改进,引入注意力机制,提出基于图注意力GNN与GCN的三维点云分割算法Point-Attention Net。Point-Attention Net有两个核心模块:膨胀点云模块和图注意力卷积模块。具体来说,针对三维点云无法直接应用于传统二维图像卷积神经网络的问题,Point-Attention Net通过图神经网络为点云建模,避免点云转换为其他形式所造成的内存浪费;针对点云稀疏、特征难以捕获的问题,Point-Attention Net提出膨胀点云方法,旨在对点云数据增强,对同一点云集拓展更丰富的语义信息,该方法通过最近邻聚类算法对参数值K按比例离散化的方式膨胀点云,以实现对同一点云集捕获不同的点云感受野信息;针对点云邻域关系以及空间几何分布问题,Point-Attention Net提出图注意力卷积方法为点云与其邻居点云分配合理权重,充分考虑邻域信息和空间分布信息的重要性,注意力机制是一种通过特征学习获得的权重分配机制,该机制会选择性的关注同类点云标签并分配高权重,定义为同类,同时忽略其他类点云标签并分配低权重,定义为异类,该方法极高的提升了边缘点云的分割性能。实验结果表明,本文所提出的Point-Attention Net优于现有的最新方法,在室内场景数据集中S3DIS,整体精度为89.33%,平均Io U提高到64.62%;在室外场景数据集Semantic3D中,整体精度为94.2%,平均Io U提高到74.4%。在Part Net点云细粒层次数据集中,Point-Attention Net的平均Io U达到51.4%。领先于Point Net++,Point CNN;在Shape Net数据集中,平均Io U达到84.9%,领先于经典点云网络Point Net,Point Net++,且在9/16的点云类别中取得最佳性能。通过对4个数据集,不同角度全方位对比,以及对消融实验的分析,验证了Point-Attention Net的高效分割性能。
其他文献
随着智能设备的广泛运用,包含用户信息的数据不断涌现,基于大数据的人工智能技术有了质的飞跃。但是机遇与挑战并存,人工智能技术利用数据为各行各业带来增益的同时,用户隐私数据泄露的问题也随之出现。因此联邦学习应运而生,这是一种特殊的分布式机器学习框架,它能够联合多客户端训练的同时保护数据隐私,因为客户端的数据不需要离开本地。这样的学习框架为人工智能技术面临的挑战提供了解决方案。本文针对现有联邦学习的缺点
多人姿态估计任务可以概括为两个阶段,第一阶段将输入图像中人体检测出来(人体检测),第二阶段基于第一阶段检测出来的各个人体,进一步将其骨骼关键点位置定位出来(单人姿态估计)。多人姿态估计在人机交互、电影制作和安全监控等领域有巨大的应用背景。在技术方面,轻量化是深度学习多人姿态估计中近年来的研究热点之一。本文对深度学习多人姿态估计的轻量化方法进行了探索和研究,主要研究工作包括:针对单人姿态估计中目前最
随着我国汽车保有量的逐年攀升,私家车通勤在日常出行中的所占比重越来越大。上路车辆的增多带来了许多交通问题,而通勤时段的拥堵问题尤其突出。目前推行的尾号限行、拥堵收费的方式未能充分考虑通勤者的临时出行需求。合乘出行正是缓解通勤时段交通压力和有效利用资源的良策,也是许多出行者倾向的选择。网约拼车近年来得到快速发展,但现有互联网打车平台未能摆脱以盈利为目标的营运性质,利益驱动下的上路汽车只会增多。本文结
目前,随着“海洋牧场”的快速建设和海洋资源的深入探索,水下机器人(Unmanned Underwater Vehicle,UUV)正广泛运用于海洋矿产、渔业等资源的开发。针对水下机器人小型化、大众化过程中出现的操作难、易受干扰、易损坏等问题,本文以自主设计的“Aquaman V3”小型水下机器人为基础,通过优化硬件和控制算法,提高小型水下机器人的稳定性与控制精度,使之能够对抗海流、碰撞等外界扰动,
我国海洋资源丰富,但并未得到充分的开发,相较于河流、湖泊等水域,海洋的水下环境更加复杂和危险,人工进行探索和开发的危险系数过高。水下机器人成为了人类对海洋探索的重要工具,而视觉图像在水下机器人探索与感知周围环境时扮演着重要的角色。由于水体的吸收和散射,水下图像具有对比度低、图像模糊、色偏等问题,影响水下机器人后续的视觉任务。因此,获取高质量的水下图像对人类探索开发海洋有着十分重要的意义。本文根据水
近年来,由于多智能体系统包含控制在航空、工业、运输等领域的广泛应用,引起许多专家学者的关注。多智能体系统包含控制可以看作一致性和编队问题的特殊情形,是指通过设计包含控制算法,驱使一组跟随者在多个领导者的引领下,最终进入并保持在由领导者所形成的凸包中运动。与传统多智能体系统问题相比,包含控制更能突出分布式协同控制的优势。针对系统收敛速度、智能体状态不可知以及信息传递过程中出现时滞、外界扰动、Do S
气候变化带来的影响是方方面面的,并且人们常采取手段对负面的影响进行干预。近年来,人们对于降雨的预测需求越来越多,传统的降雨预测手段需要收集大量的物理信息,增加了复杂度,并且过于规律的预测手段会导致预测不精准。随着深度学习的发展,图像处理在许多任务上取得成效。本文提出利用图像序列预测任务的方法来处理降雨预测任务,取得了令人满意的效果。图像序列预测即给定若干张连续图片,预测后续一张或若干张连续图片的时
六轴工业机器人在现代制造业中有着广泛的应用,是工业机器人的典型代表。为解决六轴工业机器人示教耗时费力和无法适应变化的作业场景等问题,使机器人能够在复杂的环境中实现自主规划,本文以IRB 120机器人为对象,研究了六轴工业机器人的运动规划问题,包括机器人运动学、轨迹规划、碰撞检测和避障路径规划,主要内容如下:首先,对机器人的运动学进行了求解。利用D-H法对机器人进行运动学建模,通过齐次变换得到了机器
行人重识别是计算机视觉中的一项重要任务,其目的是为了检索存在于图像或者视频中的特定行人。近年来,随着深度学习的发展,行人重识别研究也取得了许多突破,并且在安防和刑侦等多个领域取得了广泛的应用。目前,传统的行人重识别方法大多致力于提取丰富的图像特征。但是,当面对实际场景下常见的遮挡问题时,它们的识别精度都会出现大幅下降。根据遮挡情况的严重程度,本文将遮挡式行人重识别分为局部遮挡和部分遮挡两种。本文基
运动物体的目标检测和跟踪是当下计算机视觉领域中的重要研究课题之一,它在视频监控、自动驾驶、人机交互、防空预警等领域具有广泛的应用。目前,尽管目标跟踪已经取得了很多研究成果,但在一些复杂多变的场景中,由于目标受到部分遮挡、几何变形、快速运动、尺度变换等因素的影响,现有的算法跟踪目标的精度和鲁棒性不佳,因此,目标跟踪仍然是一个非常具有挑战性的任务。近年来,随着深度学习在计算机视觉的火热发展,深度学习在