【摘 要】
:
近来,全球经济快速增长,能源的消耗日益上升。建筑物的传统温控方案,造成了一定的能源浪费,并且存在忽略人体冷热感受的情形(例如在空调开启的情况下感到很冷或者很热)。构建实时的非接触式人体热舒适检测则能够有效缓解以上的情况,实现“以人为本”智能建筑。而目前的非接触式热舒适检测主要使用红外等设备,由于其价格昂贵,安装不便等原因,其并不能很好的应用于智能建筑的热舒适环境。同时,现有的一些使用图像捕捉等设备
论文部分内容阅读
近来,全球经济快速增长,能源的消耗日益上升。建筑物的传统温控方案,造成了一定的能源浪费,并且存在忽略人体冷热感受的情形(例如在空调开启的情况下感到很冷或者很热)。构建实时的非接触式人体热舒适检测则能够有效缓解以上的情况,实现“以人为本”智能建筑。而目前的非接触式热舒适检测主要使用红外等设备,由于其价格昂贵,安装不便等原因,其并不能很好的应用于智能建筑的热舒适环境。同时,现有的一些使用图像捕捉等设备进行的相关研究并不能很好的对人体热舒适状态进行精准的预测,因此,本文核心章节针对以上问题,基于深度学习、Open Pose等技术构建相关算法,主要研究内容如下:从微观的皮肤纹理角度,采集了皮肤纹理图像和对应皮肤温度真实值,对皮肤图像的色调(H)通道的频域进行了分析,提出了两类皮肤温度预测算法:横向(个体间)皮肤温度预测算法和纵向(个体内)皮肤温度预测算法:(1)横向(个体间)皮肤温度预测算法使用一部分人的数据对算法模型进行训练,预测其他个体的皮肤温度。横向算法使用四种不同的网络结构,网络Ⅰ只使用RGB图像,后三种网络结构都使用了H通道频域信息作为额外的辅助输入,这三种网络结构分别对H通道频谱加入网络的方式做出了不同的尝试。实验结果表明横向温度预测算法预测他人温度时,误差稍大。(2)纵向(个体内)皮肤温度预测算法使用个体自己前半段时间的皮肤纹理和真值数据对算法模型进行训练,对自身后半段的皮肤温度做出预测。纵向算法使用了三种不同的网络结构。网络Ⅰ只使用RGB图像,后两种网络都使用了H通道本身的数据作为额外输入,并且尝试了不同的接入方式。实验结果表明纵向温度预测算法在预测个体自身的皮肤温度时,可以维持比较理想的误差。微观角度的两种皮肤温度预测算法可以基于个体间、个体内的不同需求来给出一定误差范围内的人体皮肤温度。从宏观的人体冷热姿态的角度,采集了6种冷热姿态Open Pose关键点数据。(1)针对输入数据形式提出了静态姿态识别算法,静态算法存在一定的缺陷。(2)由此,基于动作序列对采集的数据进行改进,分别选取了每种动作流程中不同阶段具有表征作用的帧关键点数据,将它们组合成新的样本数据。(3)提出了基于动作序列数据集的三种姿态识别算法,分别使用了全连接、卷积结构,网络Ⅲ还针对不同个体所处位置的差异对数据进行位置归一化处理,增加了额外的输入层和网络结构来接收归一化的数据。最终结果表明动作序列数据集具有独特的优势;卷积结构处理关键点坐标数据更有效;归一化可以更好地提高算法的鲁棒性。实验结果表明,宏观冷热姿态判断算法,可以在人体处于过冷或者过热的热不舒适状态由于机体调节而下意识做出一些动作时,准确地判断出人体的冷热状态。
其他文献
音频场景分类是对音频数据的识别和分类,即识别判断所记录声音的环境标签,可以应用于音频监控、异常发现和风险防控等多种安防监听系统。随着音视频监控等场合记录的音频数据越来越多,传统分类方法在面对大量数据时显现出了劣势,而此时深度学习技术则已被证明在利用数据特征和建立模式识别方面具有特定优势。本文以卷积神经网络为主要模型,从数据集和网络结构两方面对音频场景分类系统做出改进,分别在未引入更多数据量的前提下
换流站光测量系统远端模块的主要作用是实现该系统中电信号和光信号的相互转换,作为高压直流输电系统的核心设备,其运行可靠性对电力系统的安全稳定运行具有重要意义。然而,由于远端模块运行环境较为复杂,近年来因远端模块导致的超高压直流输电公司光测量系统故障频发。但目前对其运行状态检测及故障诊断技术的研究在领域内仍属空白,其失效趋势无法预测,运行状态难以判断,运维规范相对匮乏,设备全寿命周期管理无技术支撑。因
在互联网时代,人们获取图像的方式主要是通过搜索引擎在数据库中进行检索,但由于一句话可能对应很多不同的图像,所以很难找到想要的图像。随着人工智能技术的突破创新,文本到图像生成任务也具有了一定的可行性。文本到图像生成是一项涉及了自然语言处理与计算机视觉的跨模态任务,该任务的目标是不仅要保证生成的图像真实,而且要保证生成的图像与给定的文本描述语义一致。近年来,研究者以生成对抗网络(Generative
随着知识技能日新月异,让训练对象尽可能快的通过学习掌握技能和知识,以满足不同任务的需求,已经成为非常重要的研究课题。因为不同个体的学习能力有差异,而且会存在优先级高的对象个体,如何进行引导式自动学习,以提高学习的效率和质量,减少不必要的时间和物力消耗,已成为学术界和工业界共同关心的问题。为了解决传统式引导式学习方法的弊端,优化学习资源分配,本文在基于均匀采样学习算法和基于贪婪策略学习算法的基础上,
近年来,随着基于5G的物联网的发展,无线终端数量及其产生的数据呈现了爆炸性的增长。面对计算密集型的深度学习应用,集中式训练深度模型对计算性能和通信连接都提出严峻的挑战,迫切需要把计算资源前移至接近数据源的节点,以分布式的方式训练深度模型以降低对计算和和通信的资源需求。本文使用的分布式技术是交替方向乘子法(Alternating Direction Method of Multipliers,ADM
歌剧是集音乐、舞蹈、戏剧、文学、舞台艺术于一体的综合性艺术形式,产生于16世纪末的意大利。经过我国几代老艺术家不断地辛勤探索,在吸收外来艺术形式的同时与我国传统文化相结合,创造出具有中国民族特色的中国歌剧,《悲怆的黎明》作为新时代的一部大型歌剧,该剧的成功同时也激励了我国民族歌剧的艺术创作。《悲怆的黎明》描述了东北某公学一群热血青年为了新中国成立在战火中浴血奋战的悲壮历程,歌剧中的革命先辈们成就大
随着时代的发展,生产力的提高,有许多人从繁琐的工作中解脱出来,这一切则归功于工业机器人的发展。同时工业机器人技术也随之大幅度提升,人机交互技术也得到了快速的发展,其应用范围也更加的广泛,人机交互的方式也更加符合人与人之间的交互方式,如人脸识别、可对话的智能音箱等。这些交互方式大大减少了人体操作机器相关指令的操作,使人体能够更加自然的与机器进行交互,大大提升了人类使用机器时的舒适性。人机交互技术在可
近年来,得益于4G技术的普及、5G通讯技术日趋成熟以及移动智能设备的完善,视频数据与日俱增。如何从海量视频数据库中快速检索到用户感兴趣的视频已经成为信息化时代的一个有意义的课题。传统的基于文本关键字的视频检索方法难以满足用户日益增长的需求,因此,基于内容的视频检索方法应运而生。本文对基于内容的视频检索的关键技术进行了深入研究,主要包括关键帧提取、特征提取与表示。在关键帧提取方面,现有的算法存在以下
软件定义网络是一种新兴的网络技术,它能够消除传统分布式网络架构的弊端。然而,在这种新兴的架构中,网络安全问题进一步增多,流表溢出攻击是其中一个非常严重的问题。由于这种攻击与传统的分布式拒绝服务攻击有着不同的特征,目前主流的检测系统对这种攻击没有很好的监测效果。本文在分析了现有的流表溢出攻击缓解方案的基础上,研究在检测精度、响应速度和资源消耗量等方面表现更好的方法。主要工作如下:首先,提出了一种基于
近年来,我国正在积极建设综合高效的智能运输基础设施。隧道作为重要的交通设施之一,在其长期使用期间,隧道衬砌会不可避免地出现各结构病害,会危害到隧道的安全运营。因此隧道衬砌结构病害高效的识别与分类,有利于保证隧道运营安全,有一定的工程应用价值和显著的社会经济效益。探地雷达(Ground-penetrating Radar,GPR)是目前广泛使用的隧道衬砌结构病害检测工具。但目前对于GPR数据的解释主