基于多任务学习的网络攻击性言论检测与识别研究

来源 :四川大学 | 被引量 : 0次 | 上传用户:yupucn
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
互联网发展日新月异,在改变人们生活娱乐方式的同时,也拓宽了社交渠道。交流分享不再受到距离限制,但问题亦接踵而至,攻击性言论犹如附骨之疽充斥在网络世界中,破坏着绿色文明的网络交流环境。攻击性言论是针对特定个人、群体进行言语攻击或能引起观者不适的文字内容,常见于各种社交媒体平台。准确的自动化检测工具能有效遏制攻击性言论的泛滥,故研究聚焦于使用机器学习方法检测识别攻击性言论。攻击性言论相关子任务包括了检测任务与识别任务。检测任务的目标是判断文本攻击性的有无。其难点在于文本攻击性体现的方式多样,常需结合上下文才能进行切实分析,而样例文本一般较短小且数据量少,能获取的信息十分有限。识别任务的目标是判断攻击性文本的指向。其核心在于需重点关注攻击性文本中体现攻击性的部分,以及这些部分所修饰的对象。针对提出的重点难点,本文进行了以下研究:(1)针对检测任务存在的难点,本文提出了一种基于BERT的多任务攻击性言论检测模型。其主要思想是在有效利用文本上下文的同时,为检测任务引入更多的有用信息。BERT预训练模型能给文本提供上下文相关的词表示,并获得从大规模语料库学习到的额外语言信息。多任务学习框架可以从特定的辅助任务中获取到特征,并为主任务提供有利于任务目标的特征信息。(2)由于目前没有公开的中文相关数据集,所以本文根据相关英文数据集的规模,对新浪微博的用户评论进行了采集与标注,构建了一个小型的中文微博攻击性言论数据集,用以验证检测模型在中文场景下的有效性。实验结果表明,检测模型在中文数据集下依然有效。(3)针对识别任务聚焦的重点,本文提出了一种融合注意力的多任务攻击对象识别模型。其主要思想是利用注意力机制着重关注攻击性文本中体现攻击的部分,以及其修饰的对象。模型延续了使用BERT模型以及多任务学习框架的优点,同时在结构中融合注意力模块,筛选出更适合任务的特征信息,进而能得到更加精准的判断。
其他文献
人脸识别技术是计算机视觉领域的一个重要研究方向,有着无接触性、信息采集成本低、自动化程度高等优势,在越来越多的实际场景中都得到了应用。目前为止对于限制场景下的人脸识别技术已经较为成熟,但是对于非限制场景下的人脸识别仍然是一项挑战。其中,复杂的光照条件使得人脸图像出现大范围阴影,图像质量变差;图像中的人脸存在平面旋转、位置偏移、小幅度姿态变化引起识别精度降低;如何全面地利用人脸图像的信息将多种特征进
立体视觉是通过模拟人类的双目视觉,获取环境深度信息的任务,它的原理主要是通过计算成像和数学建模预测物体在三维空间中的深度,以达到还原场景三维信息的目的。立体视觉作为计算机视觉当下最为火热的研究方向之一,被广泛应用在自动驾驶、虚拟现实、增强现实、三维测量与三维重建等热门领域。在计算机立体视觉中,最为常用的方法是双目立体视觉。双目立体视觉的难点在于如何正确建立双目图像之间所有像素的一对一的映射关系。因
精准农业以物联网为基础,通过部署传感器和研究人工智能技术来控制果实/农作物的生产过程,主要包括:农业产量估测、农作物智能化病害检测以及生长过程品质监控等,以更低的成本提升果实产量等级,经济效益更大化。当前,针对葡萄视觉产量预估的工作主要是从基于检测的葡萄串检测和基于回归的葡萄颗粒计数这两个方面进行开展的。然而,这两类方法相对独立,且覆盖场景有限,并伴随着较大的产量预估误差。对此,提出了串-粒融合的
近年来,随着监控摄像头的普及和城市安防的需要,行人重识别成为了计算机视觉领域越来越重要研究的课题。其潜在的应用领域也越来越宽广,在刑侦破案、智慧城市、无人超市等领域有着广泛的应用前景。早期的行人重识别技术是通过手工提取行人图像的特征,如今基于深度学习的方法在行人重识别技术上应用已成为研究的热点。针对行人重识别,相关研究者已经做了很多的工作,然而依然存在一些需要解决的问题。一方面行人重识别数据采集困
随着现代计算机视觉的不断进步和发展,三维重建技术引起了学术界和产业界的广泛关注,在模型缺陷检测、智能机器人视觉、3D打印等领域有着非常广泛的应用,尤其是对室内场景进行实时稠密的高质量的三维重建是机器人、增强现实等领域关注的重点。三维重建算法可大致分为双目立体视觉的三维重建和基于RGB-D传感器的实时三维重建。基于双目立体视觉的三维重建,一般是通过多个视角的观察数据帧和帧间的视差信息来计算出物体的深
随着测序技术的发展,生物大分子序列数据量也飞速增长。数据挖掘作为从庞大的数据中提取出未知、隐含及具备潜在价值的信息的技术,被广泛应用于生物信息领域,用于探索其生物意义。其中,三维基因组学是近些年来基因领域的研究热点,研究表明基因组的三维结构与基因的转录调控以及表观遗传存在相关性,然而物种间的基因组三维结构的比较分析尚未在植物中得到广泛研究。因此以杨树为例,使用数据挖掘技术对胡杨和新疆杨进行三维基因
染色体图像分类,是临床上进行染色体分析的关键步骤之一,在遗传疾病的诊断和肿瘤学研究中具有重要意义。得益于计算机技术的发展和进步,使用计算机进行自动化的染色体分类,成为了近年来的热门研究。染色体是非刚性物体,容易发生弯曲,弯曲的染色体会影响网络的精确率,需要对弯曲的染色体进行矫直。现有的染色体矫直方法主要分为切割矫直法和骨骼关联矫直法,这两种方法存在一些局限性:切割矫直法,通过切割图片矫直染色体,会
随着网络的普及以及大规模食物数据的涌现,为了有效获得所需的食物信息,食物计算领域的跨模态菜谱检索得到了广泛关注。跨模态菜谱检索是食物图像和菜谱之间的相互检索,跨模态菜谱检索的难点在于食物图像和菜谱之间的关系极为复杂:有较多的食物图像外观相似且部分图像存在着干扰信息;在烹饪过程中有的食物配料变得不可见或者配料外形会发生变化;烹饪指示中暗含着配料与食物成品图像的某种关系。现有研究方法存在的问题:1.由
三维探测技术具有广泛的应用价值,在地形获取、自主定位、实景模拟、工业生产等诸多领域具有重要的推广及理论研究意义。作为三维探测技术驱动核心的场景深度信息获取是计算机视觉领域的热门研究课题之一,近年来受到了研究人员的广泛关注。传统深度信息获取方法大多采用基于多视图的双目立体匹配或从运动恢复结构的方式,对输入图像及相机拍摄参数的限制要求较多,提高了深度信息获取的门槛。因此,采用更少场景图像输入、对相机硬
红外成像仿真技术能够有效克服时间、环境、地域的限制获取不同环境条件下的红外图像,传统基于场景建模的仿真方法存在建模复杂度高、建模时间长等缺点,随着增强现实技术的发展,在真实场景中加入虚拟仿真物体能够避免大范围的场景建模工作,方便快捷地生成红外仿真图像。为保证仿真图像的视觉效果更加逼真,需要重点解决虚实融合的辐射一致性问题,即虚拟景物和真实背景应具有一致的红外辐射。在真实环境中,探测器接收到的辐射值