基于行驶数据的出租车画像与收益预测算法研究

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:flywate
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着我国经济快速发展,人们的生活水平逐步提高,生活节奏逐渐加快,消费观念开始转变,越来越多的人选择搭乘出租车出行,出租车行业规模日渐庞大,车载GPS系统等采集设备也积累了海量的出租车行驶数据。与此同时,出现了出租车定价体系不够合理、评价与监管体系不够完善、出租车资源浪费等问题。目前行业内对出租车的经营状况的画像研究还远远不够,无法做到针对出租车的个性化分析从而采取更有效的管理措施。因此,本文尝试基于出租车行驶数据进行探索,对出租车画像与收益预测模型展开深入的研究。本文主要工作包括以下几个方面:(1)构建并分析出租车画像。基于出租车行驶数据,针对目前行业内对出租车画像研究不够完善的问题,提出了出租车画像方法,并结合肘部法则、轮廓系数与K-means聚类算法对多种维度的出租车画像进行聚类分析,进而对出租车的各类经营行为构建语义化标签。(2)提出了基于画像与注意力机制的深度时空网络模型(Deep SpatioTemporal network based on Portrait and Attention mechanism,Deep STPA)。针对现有时空预测模型对出租车个性化信息利用不足的问题,考虑到出租车画像特征与出租车收益的强相关性,Deep STPA模型设计了特征提取模块对出租车画像特征建模,并结合卷积神经网络与长短期记忆模型设计了时空模块,挖掘画像特征序列与出租车轨迹数据中的时空依赖性,有效地提升了模型对收益预测的能力。此外,Deep STPA模型还设计了注意力机制模块对重要的时空特征表示进行信息增强,进一步地提升了模型效果。(3)设计并实现出租车运营状态多维度画像系统。系统采用前后端分离设计,结合Spring Boot框架、Vue框架、ECharts可视化组件等多种主流技术或架构,实现了人机交互、画像特征与语义化标签可视化、收益预测结果可视化等功能,并且保证了系统的鲁棒性、耦合性与可扩展性。本文使用Deep STPA模型与基线模型在出租车真实行驶数据集上进行了对比实验与结果分析。实验结果表明,Deep STPA模型通过对出租车画像特征建模的方式,对出租车个性化信息进行了充分的利用,并使用时空模块与注意力模块对画像特征与历史轨迹特征进行了深层次的挖掘,在出租车收益预测问题上取得了比基线模型更好的效果。
其他文献
目标跟踪是计算机视觉领域的重要研究方向,因其涉及到目标尺度变化,快速运动,背景干扰等实际因素的影响及其任务的特殊性,目标跟踪成为了计算机视觉领域最具挑战性的任务之一。因此,如何借助深度学习设计一个更加精准的跟踪模型成为了当前目标跟踪任务的研究热点。近年来随着深度学习的不断发展,以及深度神经网络所具有的独特优势,为解决目标跟踪任务中遇到的难点问题提供了坚实的基础。本文对目标跟踪任务中遇到的问题进行了
近年来,多智能体系统(MAS)的一致性控制问题受到了工程学、社会科学、数学、物理学等方面学者的广泛关注。相比于单系统而言,多智能体系统由于其智能体间的相互协作,可以被用来解决很多单个的智能体难以完成的任务,更具有实用性。而脉冲控制作为一种特殊的非连续控制手段,具有效率高、维护费用低、可靠性高、鲁棒性好、方便易操作的特点。已经在肿瘤治疗、保密通信技术、生物种群控制、自动驾驶设计、电力系统调节等方面得
路径规划是移动机器人领域的关键问题之一,主要涉及移动机器人在工作空间中,从当前位置运动到目标位置的可行路径搜索。路径规划问题针对的环境可以是静态的,也可以是动态的。当环境中存在动态障碍物时,路径规划算法不仅要找到最优路径,而且要保持对最优路径的跟踪,以足够高的频率实时更新其路径,以保持对周围事件的响应。本文通过对已有的D*lite规划方法的分析,对该方法中的一些不足提出了相应的改进和优化。具体包括
随着扫描测量和计算机技术的不断发展,日常的二维图像测量扫描已经不能满足人们测量的要求,点云数据是三维图像存在的比较常见的形式,相对于二维数据,它能够更加高效存储三维物体详细信息,而激光雷达、Kinect等新型的三维传感器出现,使得点云数据收集会更加的便利,三维点云应用也会越来越广泛。但是目前的点云数据仍具有无序性、稀疏性的特点,并且一些小规模的点云数据集包含的信息及数量有限,所以通过点云数据预处理
计算机硬件计算能力的大大提高和大规模数据集的不断出现,让深度学习技术也在不断迈入新阶段。深度学习系统的发展在带来机遇的同时,也给其测试技术带来了新的挑战。与传统软件相比,深度学习系统在内部结构与外部表现方面均存在很大的差异,无法直接将传统软件测试技术中的白盒测试方法应用于深度学习系统。目前,已有多个关于深度学习系统的白盒测试覆盖准则被提出,但准则在实际系统中应用的有效性尚有待检验。本文主要研究深度
近年来,重大传染病疫情因其持续时间长、扩散范围广、危害程度高、防控难度大等特点,给世界各国经济发展及人民生活带来了严重威胁,成为各国公共卫生安全防治的主要议题。而由于疫情的突发性和不确定性,人们往往无法预测疫情的发生时间与强度,因此在应急物资调度初期及应急高峰期由于物资生产与储备不足或调度不及时等原因,应急医疗物资短缺问题时有发生。同时,随着疫情强度和扩散范围的变化,传染病应急物资调度往往具有动态
避障路径规划问题在因其在移动机器人、无人机(Unmanned Aerial Vehicle,UAV)、通信路由等领域广泛应用,一直是学者们研究的热门方向。针对路径规划问题学者们提出的算法层出不穷,其中快速随机搜索树(Rapid-exploration Random Tree,RRT)算法因其规划效率高、动态环境适应性强、高维可用、概率完备等优点,在路径规划算法中占有重要地位。本文采用基于位姿空间概
本文聚焦居民日用消费品城市配送物流的长期预测,从城市发展的宏观经济环境出发,提出了能够与不同发展进程的城市相契合的居民日用消费品物流需求预测方法,可充分顺应我国地区经济发展不平衡的国情,因地制宜地为我国各城市商贸服务业物流规划提供科学可靠的思路方法和理论支撑。首先,结合物流学科理论和相关标准,严格规范地界定了“居民日用消费品物流需求”的概念,并从多方面分析相关影响因素,构建居民日用消费品物流需求预
迁移学习是指根据已有知识和新知识之间的相关性,运用已有的知识来学习新的知识。按照是否使用深度学习方法,迁移学习可以分为传统迁移学习和深度迁移学习。当迁移源域和目标域的特征空间相同且类别空间相同,但边缘分布和条件分布不同时,该问题称为域适配问题。迁移学习的目的是为了解决在样本不足、标签不全等情况下,机器学习任务如何借助外部数据进行有效学习的问题。因此,迁移学习具有重要的实际应用价值。本人独立完成了如
对遥感图像中的道路进行自动识别与分割在地理信息系统数据的更新、土地管理、城市规划、军事打击等不同应用领域都有着十分重要的应用价值。随着科学技术手段日新月异的发展,机器学习和人工智能技术在人们日常生活中的应用更加广泛,如何利用深度学习算法更加高效地解决遥感图像道路分割的难点,提高遥感图像道路分割的精度,简化神经网络训练过程中的难度已经成为各国学者们的重点研究方向。本课题基于深度学习理论并结合可见光遥