车联网环境下快速路出口匝道与地面衔接区多阶段控制方法

来源 :交通运输工程与信息学报 | 被引量 : 0次 | 上传用户:hcpysw3
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了提高快速路出口匝道与地面衔接区的通行效率,提出了一种车联网环境下出口匝道与地面衔接区多阶段控制方法.首先,根据速度特性将出口匝道与地面衔接区划分为调整区、缓冲区和排队区.然后,针对衔接区车辆冲突频繁问题,提出了一种考虑相位优先级的车道变换策略.最后,在此基础上设计了三阶段快速路出口匝道与地面衔接区控制方法,并基于MATLAB和VISSIM搭建了车联网仿真环境.仿真结果表明:文中方法控制下衔接区路段间速度波动更小,平均速度提高了5%;与车联网速度控制相比,衔接区、排队区和缓冲区的延误分别降低了4%、6%和4%.此外,敏感性分析可知:当衔接区交通需求处于中等饱和度和渗透率大于70%时,本文方法控制效果优势最为明显.相关成果可为车联网环境下出口匝道与地面衔接区控制提供理论支持.
其他文献
针对列车车轮踏面旋转纹理信息无法准确、有效提取的问题,提出一种基于Radon变换和双树复小波变换(DT-CWT)的列车车轮踏面特征提取方法.首先,对车轮踏面图像进行Radon变换;然后,对变换后的图像进行DT-CWT分解,使用分解后的各层低频子带系数和高频子带系数模的均值和标准方差构造特征向量,将其作为区分列车车轮踏面是否发生损伤的依据;最后,由支持向量机(SVM)进行分类决策.使用动车所采集的图像及人为加噪声后的图像进行分类实验,结果表明,本文使用的Radon和DT-CWT算法能有效地进行旋转不变纹理的
语音情感识别是计算机理解人类情感最直接的方式,是实现人机交互智能化的重要渠道,但识别模型的性能需要进一步提升.为实现这一目标,提出一种基于循环卷积神经网络的语音情感识别模型ARCNN-GAP.其中,循环卷积层具有弹性路径,在确保网络深度的同时能保证优化时的梯度回传,提取更加有效的情感特征;全局平均池化运算可以在减少计算复杂度的同时降低过拟合风险;而注意力机制能够使模型更多关注情感相关特征.使用韵律特征和谱特征的融合特征在CASIA和EMO-DB数据库上进行研究,分别取得了83.29%和75.28%的识别率
微博作为当代生活中信息传播的重要平台,对其进行热点话题挖掘成为当今重要的研究方向之一.针对传统的热点话题发现方法在处理微博文本时存在文本表示缺乏语义信息、挖掘热点话题效果差等问题,本文提出一种基于频繁词集和BERT语义的文本双表示模型(Text dual representation model based on frequent word sets and BERT semantics,FWS-BERT),通过该模型计算加权文本相似度对微博文本进行谱聚类,进一步基于改进相似性度量的affinity pr
在跨项目软件缺陷预测中,源项目与目标项目的特征关联度与实例分布差异性是影响预测模型性能的主要因素.本文从特征过滤与实例迁移2个角度出发,提出一种跨项目软件缺陷预测框架KCF-KMM(K-medoids Cluster Filtering-Kernel Mean Matching).在特征过滤阶段,该方法基于K-medoids聚类算法来筛选特征子集,过滤与目标项目关联度低的特征.在实例迁移阶段,通过KMM算法计算源项目与目标项目实例间的分布差异度,以此分配每个训练实例的影响权重.最后,结合目标项目中少量有标
为解决未来自动驾驶专用车道的规划设计问题,本文提出了一种自动驾驶车与人工驾驶车混合交通流路段阻抗函数模型.首先,分析了自动驾驶专用车道的设置对混合交通流中车辆跟驰模式的影响;其次,在此基础上,引入微观跟驰驾驶模型,推导了不同自动驾驶车辆渗透率条件下的路段通行能力函数,分析了自动驾驶车辆对路段通行能力的影响;然后,将混合交通流通行能力引入经典的BPR函数,推导了考虑自动驾驶的混合交通流路段阻抗函数模型;最后,设计了数值实验讨论了自由流速度(自由流行程时间)、自动驾驶车辆的渗透率和安全车头时距对路段阻抗的影响
车路协同和车联网的发展为车辆群体之间的协作控制提供了可能.本文关注的是在车联网环境下,自动驾驶车辆群体避让动态障碍物的问题,目标是实现在不损失车辆个体效益的同时,可以达到车辆群体系统最优.本文提出了一种基于深度强化学习算法(DQN)的自动驾驶车辆群体协作避让动态障碍物的模型.模型在学习过程中考虑了车辆的安全性、单个车辆和车辆群体的行驶效率,并加入了车辆的换道协作机制.仿真验证结果表明,与现有的非协作避障模型相比,该模型可以显著地提高整体交通效率,在非常拥堵、比较拥堵和自由流三种给定的不同交通流状态下,车辆
随着电动汽车的推广和使用,电动汽车与燃油汽车在路网中交互运行,形成了混行交通环境.本文构建考虑排放约束和途中充电的电动汽车混行交通路网均衡模型.首先,分别定义了电动汽车用户与燃油汽车用户的出行成本函数,其中电动汽车用户出行成本包含行驶时间、充电排队时间及充电时长.其次,构建了考虑排放约束的混行交通路网均衡模型,证明了解的唯一性,推导了模型对应的KKT条件,且与Wardrop第一原理等价.然后,将均衡模型表述为包括用户均衡条件、排放约束、守恒约束的互补性条件形式,通过引入间隙函数,进一步将其转化为等价的无约
本文研究了带时间窗和人力分配的车辆路径问题,并提出用分支定价割平面法来求其最优解.分支定价割平面法首先根据Dantzig-Wolfe分解技术将问题的数学模型分解为基于路径的主问题模型和求最短路径的子问题模型,然后利用列生成和标签算法在主问题和子问题之间进行迭代,并使用割平面法调整可行区域来求得主问题的最优松弛解,最后采用基于车辆数目和弧的分支策略获取原问题的整数解.算法中加入了两种加速策略:双向标签算法和递减搜索空间法.通过对多组算例进行测试,验证了模型和算法的准确性,并分析了患者数目和车辆数目对结果的影
针对带有随机旅行时间、随机服务时间及时间窗约束的车辆路径问题,建立了带修正策略的随机规划模型,并给出了两阶段求解方法.第一阶段运用改进遗传算法获取先验路径,第二阶段采用两种混合修正策略(分别记为A、B)调整“失败”的先验路径.混合修正策略A(B)通过随机模拟实验判断对当前顾客的延迟服务(对下一顾客的服务)是否会对该路径后续顾客造成大规模延迟服务,并采取相应的调整措施.基于Solomon算例进行了仿真实验,对小规模算例将仿真结果同CPLEX求解结果作对比;对大规模算例将仿真结果同已知最优解作对比.结果 表明
车辆路径问题是物流和交通运输领域的研究热点.近年来,为应对激烈的市场竞争,越来越多的企业开始关注如何在降低成本的同时保证服务效率和服务质量.实践表明提高车辆路径方案的一致性不仅可以提高服务效率,还能显著提高客户满意度.因此,考虑一致性约束的车辆路径问题(又称一致性车辆路径问题)应运而生.一致性车辆路径问题是相对较新的车辆路径问题变种,相关成果具有重要的实践和学术价值.随着多样化一致性约束的提出以及相关数学模型和优化方法的迭代更新,目前针对一致性车辆路径问题已有一定数量的研究积累.本文从车辆路径问题的分类、