论文部分内容阅读
为提高粮食产量的预测精度,提出一种基于粗糙集和BP神经网络的粮食产量预测方法。该方法以吉林省粮食总产量的历史数据作为研究对象,利用粗糙集理论的属性约简特性,识别与粮食产量相关性较大的影响因素,剔除非主要影响因素,利用约简后数据建立RSBP神经网络预测模型。结果表明,粗糙集理论能有效减少数据的维数及噪声,减少神经网络的计算量,结合两种方法能有效提高预测速度和精度。