基于生成对抗网络的图像修复算法

来源 :东华大学 | 被引量 : 0次 | 上传用户:QQ359780695
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
图像修复是指利用待修复图像已知部位的信息按照某种规则来填充修补未知部位,达到人眼无法分辨图像是否被修复过的效果。传统的图像修复方法,例如基于纹理或结构的方法,在修复大面积区域破损的图像时效果不佳。如何保证修复后的图像不仅在语义和结构上连贯,同时还原缺失区域的细节和纹理成了图像修复领域的主要研究热点。自从生成对抗网络出现以后,由于其强大的生成和特征学习能力被广泛应用于图像修复任务。传统的生成对抗网络存在训练不稳定和模式崩溃等问题,针对这些存在的问题本文提出了一种基于生成对抗网络的图像修复方法,主要研究内容如下:(1)针对传统生成对抗网络存在的例如训练困难、模型收敛困难、模式崩溃等问题,引入Wassertein距离作为度量标准,结合WGAN(Wassertein Generative Adversarial Networks)的思想对传统生成对抗网络做出改进;引入梯度惩罚项和一致性项来完成Lipschitz约束,稳定生成对抗网络的训练,保证生成样本的多样性。(2)在上述修复模型的基础上,提出采用局部判别器和全局判别器相配合的方式,保证修复后的图像在全局结构和局部细节上尽可能的连贯真实;针对修复后的图像存在纹理细节不清晰和局部信息模糊的问题,在生成器中引入跳跃连接,并增加移位连接模块来获得更加精细的纹理细节和更加合理的语义;引入纹理网络,结合特征重建损失、均方误差损失和对抗损失对修复模型进行迭代训练,提高生成器的纹理细节生成能力。(3)应用本文设计的图像修复模型实现图像文字自动去除。首先使用文字检测算法得到图像中文字区域的位置信息,在文字区域生成掩码模拟真实破损部分,最后通过基于生成对抗网络的修复算法对去除文字后的缺失图像进行修复,达到图像文字自动去除的效果。
其他文献
针对煤矿井下掘进机器人位姿感知精度低、远程监控效果差及智能控制难度大等问题,通过分析机器视觉在煤矿掘进机器人中的应用情况,从掘进机器人位姿视觉检测、远程视频监控、数字孪生驱动控制和智能协同控制等方面进行深入探究,提出煤矿掘进机器人位姿视觉测量原理和方法,结合远程视频监控技术,实现对掘进机器人地面远程控制,并对其应用效果加以分析与总结。同时,为进一步提升掘进机器人智能化程度和远程控制可靠性,利用数字
在机器人视觉系统中,如何对带有旋转的运动物体进行快速准确检测和轨迹预测具有很重要的研究意义以及应用价值;乒乓球机器人自上个世纪80年代以来就吸引大量研究者深入研究,在当下的技术背景下,随着AI技术的发展,对乒乓球机器人的研究具有更广阔的前景。本文聚焦于乒乓球机器人的视觉系统,以旋转乒乓球为研究对象,深入探讨深度学习在乒乓球机器人视觉系统中的可行性,并且在七自由度库卡机械臂实物系统中进行验证。本文制
家居服作为现代人日常休闲生活中所必备的服装,日益受到人们的关注。随着人们生活水平的提高,人们对于家居服面料的天然、舒适、环保性有了更高的要求。目前国内家居服市场中,存在一些问题。例如,面料、风格等方面较为单一,缺乏自主创新,对于家居服研究关注较少。同时,木棉纤维具有天然、超细、高中空、吸湿导湿、防菌防螨等特性,是一种绿色环保的天然纤维素纤维,可以将木棉纤维用于家居服的面料设计中,为家居服的设计开发
多智能体系统问题中一个主要的研究方向就是一致性控制问题。本文主要关注的是多智能体系统的采样一致性控制问题和定时一致性控制问题。实际应用中,由于计算机控制系统的广泛运用,这使得采样控制策略逐渐成为工业生产中的一种重要控制手段,并且在很大程度上取代了传统的机械式控制手段,因此本文首先对多智能体系统的采样一致控制做出了研究。其次,考虑到定时控制策略在估计系统稳定时间上的优越性,即稳定时间与初始状态无关,
21世纪以来,服装行业的竞争日趋激烈,以计划驱动的标准化、规模化的生产模式已不能满足消费者多样化需求,服装企业正不断向小批量订单式生产转型以适应需求变化、缩短产品生命周期、提升库存周转率,这对服装制造业生产管理水平提出更高要求。目前企业在进行服装大规模个性化定制时,面临交期不确定、订单响应速度不及时、车间柔性化程度不高等问题,在生产过程中瓶颈排除不及时,生产进度难以控制导致无法准时完成订单任务,亟
乙酰乙酸基团是一种有机合成中常用的高反应活性基团。它可以和多种常见的官能团进行反应,比如烯胺化反应、迈克尔加成、多组分反应、酶促聚合、金属络合等,从而得到不同的功能性产物。纤维素作为分布最广泛、应用最悠久的可再生天然高分子,具有极高的利用价值和发展前景。通过酯化反应将乙酰乙酸基团接枝到纤维素骨架上,再进行二次衍生,可以轻易地实现对纤维素的各种改性,进一步拓展纤维素的应用领域。本论文分别使用生物酶催
在当今信息化时代,如何快速并且准确地从互联网海量的信息资源中获取自己所需要的信息显得十分重要,于是个性化推荐系统应运而生。电子商务是近年来比较火热的一个行业,个性化推荐系统在电商平台上的应用被广泛关注。大多数推荐算法的研究都依赖于显式评分数据,然而电商平台中丰富的隐式反馈数据信息蕴藏着巨大的推荐价值,近年来,面向隐式反馈的推荐算法研究也越来越热门,其中有学者提出了一种个性化推荐模型:贝叶斯个性化排
随着网络时代的快速发展,网民们可以在不同的生活网站上针对各种各样的商品发表自己独特的评论,也可以在社交网络中针对某一社会现象提出自己的见解。用户发表的文本评论信息中包含着很多带有情感倾向的语句,这些语句经过整理与研究分析后,对商品和社会等相关领域具有很高的研究价值。因此文本情感分析作为自然语言处理研究的子领域,在过去几年中受到了广泛的关注。方面级别的情感分类是情感分析中的一项细粒度的工作,与传统情
深度学习作为人工智能中的关键技术,已成功用于解决各种2D视觉问题,基于深度学习的三维物体识别技术在自动驾驶和机器人等许多3D视觉领域的广泛应用,也逐渐引起了越来越多的关注。通过各种先进的3D扫描仪可以直接获取到日常生活场景中三维物体的表面点云,但由于点云的无序结构,使得神经网络处理点云时面临着独特的挑战。近年来,研究者们提出将点云转化成其他表示形式来解决该领域的不同问题,如渲染成多视角二维图像或者