【摘 要】
:
硬件特洛伊木马(Hardware Trojans,简写HTs)是指在芯片设计或制造过程中,在非授权情况下对原始电路进行有目的的修改或篡改,以达到在无条件或者在某种特定触发条件下实现改变系统功能,泄露机密情报或摧毁电路的目的。在Moore定律和Dennard缩放比例定律的指导下,芯片的集成度越来越高。在超大规模集成电路中,单个芯片可以容纳上亿个晶体管。随着IC(Integrated Circuit,
论文部分内容阅读
硬件特洛伊木马(Hardware Trojans,简写HTs)是指在芯片设计或制造过程中,在非授权情况下对原始电路进行有目的的修改或篡改,以达到在无条件或者在某种特定触发条件下实现改变系统功能,泄露机密情报或摧毁电路的目的。在Moore定律和Dennard缩放比例定律的指导下,芯片的集成度越来越高。在超大规模集成电路中,单个芯片可以容纳上亿个晶体管。随着IC(Integrated Circuit,集成电路)规模的快速增长和制造模式变得更加灵活,IC的主要安全问题从原来的工艺不成熟时期的缺陷也转变为由利益纷争引起的硬件木马,IC的发展趋势导致它们极易受到硬件木马的攻击。硬件木马的检测从本质来说是从其工作机理出发,根据硬件木马的物理参数和工作参数建立数学模型,将硬件木马的检测转变为数据分类问题的过程。而模型的准确度很大程度上取决于模型的有效参数输入规模和函数拟合能力。为了能更好的建立检测模型,本文在研究硬件木马攻击机理和检测原理的基础上,结合CNN(Convolutional neural network,卷积神经网络)算法,从硬件木马植入IP(Intellectual property,知识产权)的设计和检测两方面进行探究,开展了基于机器学习算法的硬件木马的检测技术研究工作。本文首先对国内外硬件木马的研究工作进行综述,并结合现有各种主流技术的短板讨论机器学习算法对硬件木马检测的有益性。在实验中首先设计并实现了GDMA(Graphic Direct Memory Access,图像直接存储存取)载体电路,并在考虑系统级设计的IP安全和Bus安全的基础上,有针对性的设计了三种硬件木马对载体电路进行攻击。其次以环形振子网络的硬件木马检测技术为研究对象,提出从电路硬件、数据测量、软件算法等多方面的优化策略,设计并实现专用检测电路结构,搭建二维检测数据收集硬件平台。最后根据硬件木马检测思路设计检测流程并建立针对该问题的卷积神经网络分类模型,在FPGA开发板上对设计的木马进行检测并分析实验结果,在该检测平台上达到了约93%的数据检测正确率,比均值降维方法提升约9%左右。
其他文献
微波热声成像是一种非侵入式,非电离的生物医学成像技术,在近几年内得到快速发展。它结合了微波成像技术和超声成像技术的优势,提供高对比度、高分辨率和高穿透的成像能力,在乳腺癌、血管成像和脑成像领域均有广泛涉及。在微波热声成像技术中,图像重建算法是极其重要的一环,它直接影响了成像的效率及其结果的质量和可靠性。现有的经典重建算法往往需要在计算效率和重建质量之间进行权衡,并受到硬件设备和数据完整性的影响,产
一些热端部件具有结构复杂、空间狭小等特点而不易使用红外测温、丝式热电偶等常规测温方式进行温度测量,如高速转轴、航空发动机等,同时获取这些热端部件表面温度信息对于监测部件工作状态、热仿真验证等环节又至关重要。因此能够工作在较高温度区间,并且易于与异构部件集成的柔性薄膜传感器在上述极端环境下拥有重要的研究价值和广泛的应用前景。本文以复杂热端部件表面温度测试为研究背景,选取柔性哈氏合金基带作为基底,结合
在目前信息时代高速发展和科技水平发展脚步加快的趋势下,磁场传感器给人类生活带来了便利,提高了生产力的效率,在现代生活发展上也起到了显著的推动作用。在众多传感器中,基于各向异性磁电阻(Anisotropic Magnetoresistance,AMR)的角度传感器是目前在磁性传感器中研究的热门,因为其具备较高灵敏度,能在恶劣环境下工作,集成度高且成本低等优势。随着传感器制备水平的提高,目前商业化Ni
基于物联网技术发展的需求,磁传感器作为一种非接触式感知元器件,已日益不可或缺。其中,基于巨磁阻效应(Giant Magnetic Resistance,简称GMR)的GMR传感器因其尺寸小、功耗低、性能稳定、易于集成等优势,吸引着各国科研人员的广泛关注与研究。本研究针对目前巨磁阻单极开关开关场可调节范围小的问题,提出了双钉扎自旋阀结构,利用交换偏置场易于调整,以可调交换偏置场替代只能在较小范围内改
随着信息时代的到来,物联网技术越来越受到关注。磁传感器作为其应用中重要的载体之一,受到广大科研工作者的关注。磁传感器的压磁系数是一个关键指标,决定了其应用价值和范围,主要是由磁性材料的本征参数所决定。其中,磁电复合材料由于具有较好的磁电耦合特性而被作为磁传感器的磁敏组元。本论文主要研究具有良好的压磁系数的磁致伸缩材料及其与PZT压电陶瓷的复合手段,并对基于得到的磁电复合材料进行了磁敏组元的设计,从
在电磁理论中,格林函数表示单位强度空间某处的点源在一定边界条件下产生的响应(场量)。常用的具有解析形式的格林函数只有在一些特定的边界条件下才能得到,如自由空间格林函数或半空间格林函数等。对于更一般的复杂边界条件,格林函数只能通过数值方法求解得到,即数值格林函数。传统求解数值格林函数的方法包括有限元法、时域有限差分法和矩量法等。利用这些数值方法求解的数值格林函数一般表达为矩阵形式,其运算量与所需存储
近年来,由于声表面波(surface acoustic wave,SAW)传感器具有无线无源、体积小等特点被研究者们广泛关注。特别是在工业生产、航空航天等领域的极端恶劣如高温高压等环境中,SAW传感器拥有广泛的应用前景。但是,极端环境对SAW传感器的稳定性来说是一种挑战,目前成熟的SAW温度传感器最高能够工作在600°C左右,这还远不及上述应用场景下的要求。因此,需有必要研制一种能够稳定地工作于极
人工神经网络作为机器学习中的一个重要分支,随着深度学习的发展,在计算机视觉,自然语言处理等人工智能领域得到广泛应用,使用基于神经网络的方法在这些领域的表现已经逼近或超越人类。为了获得更加准确的决策,人们使用更大的数据集和更加复杂的网络结构,使得神经网络需要更长的训练和推理时间,传统通用芯片如CPU,GPU等显得效率不足。根据神经网络的特点在芯片体系结构上进行定制设计的专用芯片具有更高的效率,更加适
卷积神经网络(Convolutional Neural Network,CNN)是深度学习领域最重要的神经网络之一,被广泛地应用于图像处理和目标识别等方面。随着卷积神经网络层数的不断加深,结果不仅没有变得更好,反而出现了网络退化的问题。为了解决这个问题,He Kai Ming提出了残差神经网络(Residual Neteork,ResNet)。通过在网络中的不同层之间进行残差连接使得网络更容易实现
随着硬件计算能力的不断提升以及算法模型的快速更新迭代,人工智能技术在实际生活中拥有广泛的应用。以深度卷积神经网络(Convolutional Neural Network,CNN)为代表的数学模型在语义分割、语义识别、目标检测等计算机视觉领域有着极佳的性能表现。卷积神经网络是一种计算密集型高效算法,目前主要采用通用处理器CPU或GPU完成算法的反向训练和前向推理过程。但是,面对实际应用场景对于硬件