基于行人特征增强的复杂场景行人再识别研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:cntanmingyong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着人们公共安全意识的提高,智能安防监控系统在公共安全领域中起到了越来越重要的作用,而行人再识别作为其中一项关键技术,受到了广泛的关注和研究。但在复杂的实际应用场景中,通常会存在行人姿态变化、空间错位等不理想的情况,导致算法提取到的行人特征难以达到理想的效果。因此,本文主要围绕如何增强行人特征的表示能力展开研究,提出了两种能够有效增强行人特征的行人再识别网络。本文的主要工作内容及创新点总结如下:1.针对复杂场景中存在行人姿态变化、空间错位以及光照强度变化等状况,导致行人特征不够理想的问题,本文提出了一个基于金字塔结构的特征增强网络用于增强行人特征的表示能力。该网络设计出一个金字塔联合注意力模型,通过采用双流分支的方法将一个新的基于金字塔结构的空间注意力模型和现有的通道注意力模型进行有效结合,充分发挥两种不同注意力机制的互补特性,增强行人特征的表示能力。此外,该网络还包含一个简单的特征融合分支,能够将不同网络层的行人特征进行有效融合,从而丰富行人特征所包含的信息。实验表明,该网络能够有效增强行人特征的表示能力,进一步提升网络的识别效果。2.针对无监督跨域问题中,由于复杂的实际场景中往往存在不同行人间外观相似度较高,相同行人间外观变化剧烈的现象,导致采用聚类算法生成伪标签的过程中将不可避免的带来标签误差的问题,本文提出了基于交互注意力和代理学习的伪标签优化网络,用于有效增强行人特征的表示能力并优化网络的训练过程。该网络通过设计出交互注意力模型用于加强行人特征不同维度的信息交互,提升不同行人特征间的区分能力。此外,该网络还采用代理学习将平均模型以及特征存储器进行有效结合,将提取到的特征与目标域整体样本进行相似度计算,并为目标域中的每个样本都生成对应的软伪标签用于优化网络的训练过程,减小标签误差所带来的影响,从而有效提升了跨域模型的泛化能力。
其他文献
随着国内经济的高速发展,越来越多的国民拥有汽车,但是车位的供需矛盾不断凸显。相比以前的停车库,立体停车库因停车使用率高而且智能等很多优势,立体停车库将取代传统停车库。立体停车库作为高大空间建筑,其内部结构极为复杂,运行机制较为繁琐,一旦发生火灾,车辆无法及时撤离,很容易造成二次爆炸等事故。因此对立体车库内部火灾的早期探测、精确定位以及自动灭火是非常必要的。立体停车库内部结构极为复杂,本文针对立体车
随着网络和计算机视觉的发展,各式各样的媒体和应用出现在人们生活当中,随之带来的网络和信息安全问题,受到了广泛关注。人脸识别技术,以其非侵入性的特点,成为人工智能领域备受关注的技术之一,在视频监控、人机交互和安全系统等实际应用中具有重要意义。现阶段的正面人脸识别技术在精确度方面已经达到很高,但是在有部分遮挡时,算法识别精确度有待提高,且模型比较庞大。针对这些问题,本文改进了一种基于FaceNet的算
近年来,神经网络加速器与IoT设备相结合的AIoT设备被广泛应用到多个领域。但较小的晶体管尺寸和较低的供电都会提高AIoT处理器软错误发生的概率,从而导致神经网络加速器出现大量计算错误。在这种情况下,若直接将离线训练好的神经网络部署到加速器上,会导致相当大的预测精度损失。而传统的容错技术(如三重模块化冗余)会带来相当大的功耗和性能损失。因此,国内外学者通过研究神经网络自身的特点发现可以对神经网络进
增材制造技术是一种逐层堆积的新型制造方法,与传统减材制造相比具有工序简单、成型效率高等优势。在粉末床金属增材制造中,金属粉末的快速熔化和凝固会产生陡峭的温度梯度,在成型零件内部产生较大的残余应力,导致翘曲变形和裂纹等缺陷,最终影响零件的整体性能。扫描策略是影响成型零件质量的关键因素之一,在粉末床增材制造成型薄壁件中,用常规的扫描路径很难获得质量理想的成型零件,为了减少薄壁件成型过程中的残余应力并控
近年来,以神经网络为基础的深度学习技术成为当前研究的热点。然而,神经网络在性能提升的同时,其具有的复杂结构却制约了神经网络在终端应用场景的发展潜力。低比特DNN是神经网络发展的新分支,具有计算强度低与存储需求小等优点;低成本FPGA是实现DNN加速的主要硬件平台之一,具有灵活性高、开发周期短等优点。因此,低比特DNN与低成本FPGA为在边缘端实现高性能的DNN加速器提供了良好的解决方案。但是,在实
地球表面的平均气温这些年正变的越来越高,碳排放是重要推手,全球多个国家尤其是西方发达国家对此越来越重视。我国进入工业化以后,煤炭、电力等能源消耗量逐年增加,碳排放量也随之增加,在碳排放方面正面临着非常严峻的国际形势。水泥行业作为传统高耗能企业,碳排放量大,加之激烈的市场竞争,因此节能减排、建设能源管理系统对水泥企业来说是非常重要的课题。能源管理系统以水泥企业实际生产数据为基础,统一节能绩效衡量办法
机器视觉技术作为当前的研究热点,其在工业自动化生产的过程中得到越来越广泛的应用。在传统流水线模式下,机器人常常要完成对工件的抓取操作,而工件空间位置的获取与姿态计算的准确性是执行抓取操作的前提与关键。当抓取任务需要目标物空间位姿信息时,不同于单目视觉只能获取目标的二维信息,双目视觉具备获取目标三维信息的能力。提出一种基于双目立体视觉系统的箱体工件空间位姿检测方案,对箱体工件空间位姿检测过程中目标识
随着电影数量的不断增多,视频网站的电影数量也在不断地增加,但是视频网站常常会给用户推荐一些低质量或者用户不感兴趣的电影。如何提高推荐电影的质量以及与用户兴趣相关的电影成为了电影推荐的研究重点之一。虽然视频网站的电影推荐系统日益复杂化,相关的推荐算法也多种多样,但是以目前的推荐系统来说也难以满足要求。因此为了解决推荐电影的低质量问题和电影与用户兴趣相关性的问题,本论文展开了相关研究,主要包括以下内容
行为识别是视频分析领域的重要研究课题,在视频监控、医疗辅助、人机交互等场景中应用广泛,其目的是借助计算机视觉技术自动分析和识别视频中的人体行为,并给出分类标签。然而,由于视频内容的复杂性和行为本身的多样性,使行为识别面临着巨大的挑战。现有的行为识别方法,在分析和识别视频中的人体行为的过程中,仍然受到复杂场景信息和背景噪声的干扰。当前的多数方法局限于从外观和光流中学习行为模式,使得模型在分析理解复杂
MEMS压力传感器因其结构特点和工作原理,具有测量精度高、易于大批量生产、长期稳定性好等优点,且制造过程与传统集成电路工艺兼容,已经广泛应用于航空航天、智能制造、汽车电子及生物医学领域。随着先进制造、人工智能技术发展,结合谐振式传感器具有灵敏度高、成品体积小、驱动功耗低的特点,谐振式MEMS压力传感器一直以来是国内外高校、科研机构研究的重点。传统压力传感器主要采用静电激励、电热激励、压电激励等驱动