鸡腿菇采摘机器人轨迹跟踪控制研究

来源 :兰州理工大学 | 被引量 : 0次 | 上传用户:zz123251234
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统鸡腿菇的采摘和加工主要靠人工劳作,其中不可食用的根部切削是整个加工流程最费时费力的一道流程,实现根部自动化切削是目前急需解决的关键问题,机器人的应用给解决这一问题提供了契机。因鸡腿菇自身较脆,采摘加工过程对机器人的核心-“控制器”要求较高;基于运动学位置误差控制对伺服驱动器要求较高,且机器人发生意外,不能及时做出响应,造成机器人损坏甚至对工作人员的生命安全产生威胁。基于动力学模型力矩误差控制,可以保证机器人关节高精度轨迹跟踪控制,同时也改善了机器人的动态特性,提高了误差收敛速度。本文在鸡腿菇采摘加工流程设计的基础上,对夹取机构的机器人展开基于动力学模型力矩误差控制研究,实现机器人高效、平稳、快速的抓取鸡腿菇。本文主要研究内容有:首先设计了整套鸡腿菇采摘加工的工艺流程。将整个采摘流程的机械系统分为采摘机构、传送机构、夹取机构、切削机构。通过对目前市面上主要机器人的应用分析决定利用SCARA机器人作为夹取机构的机器人。其次建立了夹取机构机器人的运动模型和动力学模型;利用机器人的D-H参数变换解出机器人的正运动学和逆运动学模型,求出机器人的雅可比矩阵实现机器人工作空间和任务空间的坐标转换;以拉格朗日法建立夹取机构的机器人动力学模型,对于机器人关节存在摩擦,利用线性函数逼近Stribeck摩擦模型。通过线性变换消去一些线性相关的动力学参数,求出了机器人动力学最小参数集。然后由于夹取机构的机器人动力学参数未知,采用理论辨识法对其动力学参数辨识。为了提高参数辨识精度,重点对辨识算法进行了优化改进,采用改进优化后的遗传算法替代传统最小二乘法。然后按照动力学参数辨识基本流程对夹取机构的机器人的参数辨识。最后通过实验验证了优化改进的遗传参数辨识的精度比最小二乘法高,可以替代最小二乘法作为参数辨识的算法,对抓取机构机器人轨迹跟踪控制提供了动力学模型。最后对夹取机构的机器人的轨迹跟踪控制展开研究。辨识的动力学参数无法与实际值完全相等,影响动力学模型精度的因素主要为建模时摩擦模型不精确和外界干扰。因此以计算力矩控制作为主控制器,然后对未建模(外界干扰和摩擦建模不精确)非线性部分采用模糊RBF神经网络自适应补偿控制策略。设计的模糊RBF神经网络是一个具有五层结构的Mamdani型,动态调整径向基函数的中心和宽度。利用模糊RBF神经网络逼近动力学未建模部分非线性部分进行反馈控制,引入滑模面抑制机器人抖动。仿真实验表明,采用了模糊RBF神经网络补偿控制策略比单纯的计算力矩控制降低了关节跟踪误差和时滞性。实现了机器人高精度轨迹跟踪控制和平面定位,为机器人抓取鸡腿菇提供了高效、平稳、快速的控制策略。
其他文献
随着科学技术的快速发展,高科技电子产品的大量涌现,视频监控装置在公共场所随处可见,尤其是部署在人口密集,流量较大的重点管控区域,进行全天候24小时的监控,彻底替代了传统的值班人员,实现高速有效的人数统计。为保障城市安全,加快智慧城市建设提供了有效的技术支持。随着深度卷积神经网络的发展,现有的密集人数统计算法已经取得了相当优异的成绩,可以自动分析计算场景中人群密度,实现特定场景中关键区域人数的统计及
随着我国高速列车的迅猛发展,对列车的运行轨道提出了更高的要求,安全可靠、高质平顺的无缝铁路使列车运行速度得到了大幅提升。而接头处作为无缝铁路的薄弱之处,其焊接质量直接影响着列车的运行安全。在役铁路经常出现各种损伤,严重时则需要进行现场焊接修复。目前国内外主流的钢轨焊接方法大都难以满足高效、便捷的现场修复要求,课题组提出的焊剂带约束电弧超窄间隙焊接方法是一种设备使用便捷、热输入较低的高效焊接方法,实
学位
图像语义分割是对图像中的信息进行类别标记的图像分析方法,即利用图像分割网络建立输入图像和预测结果之间的映射关系,通过映射关系实现特征类别的分割标记。近年来,深度学习技术的兴起促使图像语义分割方法快速发展成为计算机视觉领域的研究热点,这吸引众多研究人员将注意力聚焦于此;此外,卷积神经网络凭借其独特的结构优势已成为研究图像语义分割的经典网络。但由于在图像语义分割中应用场景的多变和高质量分割精度的需求导
间歇过程作为现代制造业重要的生产方式之一,广泛应用于事关国计民生的冶金、钢铁、制药、化工等传统工业领域以及半导体制造等新兴领域,然而,一旦生产过程发生故障,将对国家和社会造成巨大损失,因此,如何准确高效的监控间歇过程生产状态,保证生产过程的安全可靠运行已成为人们关注的焦点。近年来,随着计算机技术和传感器技术的发展,间歇过程在生产中积累了丰富的反映过程运行状态和产品质量的数据,这也促使基于数据驱动的
五轴联动机床被广泛应用于复杂曲面的加工,具有加工效率高、精度高等优点。但五轴机床的两个旋转轴增加了额外的几何误差,影响了加工精度。因此本文对BC型双转台五轴数控机床的几何误差辨识算法进行了研究,基于齐次坐标变换建立了数控机床的几何误差模型和运动学模型,并利用球杆仪测量,提出了一种基于虚拟观测法的几何误差辨识算法,在此基础上通过所建立的运动学模型对机床误差进行了补偿。具体工作如下:首先,基于齐次坐标
数控机床代表着精密制造的技术水平,其精度和可靠性是衡量加工零件质量和安全性能的重要指标。提高机床的加工精度,保证机床的使用可靠性,对数控机床的发展和国家制造水平的提升具有重要意义。对误差变化的规律进行分析建模,并运用计算机计算、预测和控制在加工过程中人为制造一个相反的误差与之补偿,能实现机床加工精度的大幅提高。本课题详细介绍了误差补偿相关过程和技术,分析了旋转轴位置对机床综合误差的影响,建立了数学
机器人应用场景正在不断拓展,从最初的用于工业生产提高生产效率,到当下开始转向服务行业帮助人们创造美好生活。因为家庭服务的需要,家庭服务机器人独特优势越来越明显,但是至今还没有开始应用,是因为存在一定的实际问题。其中就包括家庭服务机器人面临未知复杂的家庭空间环境而无法实现自主导航问题,因此对其导航系统的研究显得十分重要和迫切。本文以项目小企鹅形的家庭服务机器人在家庭环境下导航问题为研究对象,针对未知
正逐年加剧的人口老龄化问题给我国养老助老行业带来了巨大冲击。同时养老产业体系不完善,养老资源不充足,劳动力人口比例逐年缩减等因素,都使得未来养老助老产业将面临资源大量短缺的问题。伴老家庭服务机器人的出现为解决养老助老这一系列的社会问题提供了新思路,也成为当下的研究热点和产业的发展方向。本文以伴老家庭服务机器人为研究对象,针对现有家庭服务机器人无法有效监控老年人异常疼痛状态的实际问题,重点对老年人痛
肘关节在创伤或手术后容易僵硬和粘连。高能量创伤易导致肘关节活动性丧失。轻度创伤也可能导致肘关节僵硬。近年来,尽管肘关节及周围组织创伤的治疗手术取得了世人瞩目的进步,但术后肘关节粘连挛缩仍很常见。改良肘关节矫形器能够提供术后肘关节一个不受环境影响、能做康复运动、便携的康复环境。生物阻抗谱法(BIS)能通过对生物电信号的分析,快速准确的得到其机理信息,具有高速、便携、无创伤等特点。因此,本文提出一种基