基于全局空间注意力及双阶段特征融合的海马体图像分割

来源 :东华大学 | 被引量 : 0次 | 上传用户:ivanc1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
我国社会正逐渐步入老龄化,以阿尔兹海默症为代表的精神疾病正在危害老龄人群的生命健康。海马体作为大脑神经系统的重要组成部分,其体积结构的变化正是诸多精神类疾病早期病灶的临床特征之一,所以实现海马体MRI图像的有效分割对于相关精神疾病的诊断与治疗有着十分重要的意义。然而传统通过人工的方式对海马体图像进行分割,不仅对操作人员的专业水平要求高,而且易受主观因素等影响出现误分割情况。因此如何利用深度学习技术自动化分割海马体是医学图像处理的一个重要研究方向。本文针对海马体图像存在的体积小、形状不规则、轮廓不清晰等特点,提出一种结合全局空间注意力机制和边界细化损失函数的双阶段特有特征深度融合改进分割算法,主要贡献有:(1)针对MRI图像中海马体相比于全脑体积过小引起的类不平衡问题,提出了一种双路全局空间注意力机制GSA(Global Spatial Attention):一路基于非局部均值去噪滤波思想,通过高斯函数计算图像任意像素点间的交互直接捕捉远程依赖,突破卷积操作相邻点的局限性,能扩大感受野至整个特征图谱,获得全局上下文建模能力;另一路压缩特征通道并激活获得空间权重谱图,通过施加于特征图完成空间信息校准,最后通过广播机制与全局信息进行融合实现了对海马体目标区域的精准定位。(2)针对海马体图像存在的边界轮廓不清晰问题,基于离散优化技术计算梯度流动的曲线演变原理,提出了边界细化损失函数。通过预测值与标记值在空间域中积分进行轮廓度量,最小化两边界之间的L2正则距离平滑边界分割过程。此外,论文还提出了特有特征深度提取模块SDC(Special Deep Conv),针对不同尺度图像蕴含空间细节信息不对等的特点,在维持高分辨率的同时采用bottle-neck进行特有特征提取,并在上采样过程对此类损失的空间信息进行补充,提高分割精度。(3)提出一种面向海马体的双阶段深层特征融合网络。该网络将海马体自动分割任务划分为两个阶段:在第一阶段,基于Ghost模块思想,以低廉成本运用一系列线性变换生成能充分揭示内在特征信息的幻影图以构建轻量化网络模型对海马体图像进行快速分割。第二阶段再将粗分割结果输入经过改进的U-Net网络以实现分割进一步的精细化。论文将以上内容在公开数据集NITRC上进行了训练和测试。实验表明相比于U-Net++等网络,本文提出的算法模型对海马体区域的关注更为精确,对边缘轮廓的纹理更为敏感,Dice相似度有明显的提升,有效解决海马体图像分割类不平衡、精度不高等问题,为临床探索一种新的智能海马体分割方法。
其他文献
骨龄是一种对骨骼成熟度的解释,通过它可以确定人类的生物学年龄,判断儿童的发育情况。骨龄应用诞生至今已有几十年之久,它不仅在儿科的临床环境中起着重大的作用,其应用已延伸至多个领域。目前,众多专业医师仍采用传统的骨龄评估方式,例如评分法、图谱法等。传统的骨龄评估方式耗时费力,容易受到主观因素的干扰且难以普及。在深度学习兴起之前,为克服人工骨龄评估带来的问题,人们尝试使用传统的图像处理方式来辅助医师进行
甲状腺是人体最大的内分泌腺体,甲状腺结节则是甲状腺内部的肿块,可分为良性和恶性两类。我国的甲状腺结节发病率高居全球前列,属于高发性疾病,患者基数大。超声检查由于其高效且无创的特点成为了筛查诊断甲状腺结节的主要手段。甲状腺超声报告通常描述了甲状腺腺体、局灶性病变和淋巴结的形态及血流特征,这些特征是临床医生进行结节良恶性诊断的主要依据。因此,利用人工智能技术对甲状腺超声特征进行深度学习,建立甲状腺结节
移动互联网的飞速发展和智能终端设备的广泛使用使人们的工作和生活方式逐步被网络化,“远程”和“共享”成为人们社会生活方式的主要组成部分。而且随着计算机科学、通信等传统产业的融合,多媒体正逐步深入人类社会的每一个角落。图像是一种可视化的多媒体信息,是最主要的多媒体形式之一,也是传递信息的重要媒介之一。因此,图像传输的安全性引起了研究者的关注。目前保证图像安全传输的方法有两种:图像加密和信息隐藏。本文主
目前肝脏恶性肿瘤依然是世界上最普遍的癌症之一,它也是人类死亡的主要原因,对人类健康构成了巨大的威胁。为了有效降低癌症死亡率,患者依然需要提前对身体进行全面的检查以及尽早接受治疗。然而由于肝肿瘤与其周围软组织之间的对比度较低,分界不明显,而且对于不同的病人,肝肿瘤的形状,体积,数量和位置等差异明显,同时多种扫描方案导致CT图像存在噪声干扰等问题。由于肝肿瘤分割难度较大,仅仅依赖医生的肉眼检测很难得到
速度快、准确度高的车辆检测系统不仅能够帮助交通指挥员加强对道路交通系统的管理,而且能够在交通事故等紧急事件中快速提取出事故车辆的信息,提高处理紧急事件的效率。可见,提高车辆检测的精度和速度对增强城市道路交通管理系统具有重要意义和应用价值。本文深入研究了Mask R-CNN网络模型,对其主干网络和Ro I Align进行改进,提出了CA-PS Mask R-CNN网络模型,完成以城市道路为实际背景的
随着国家经济实力的腾飞和科学技术的突飞猛进,各行各业对数据重视程度日益提高,大量生产、交易、医疗等数据被收集起来,用于企业产品升级或服务转型等诸多方面研究。面对具有高度复杂、体量大、易变性等特点的海量数据,如何对其进行精准检测和快速分析,从中挖掘出具有的潜在价值,已成为当今数字化时代研究的热点问题。作为大数据领域中的一个重要研究分支,时序数据的异常检测与快速分析技术主要利用整体数据的分布状态,找出
由于当下的中小学生握笔手势不规范,导致写字质量不高、坐姿不良、眼睛近视以及手指关节增生等问题,对其身心健康造成不良影响。针对握笔手势的问题,我国研究者们已经对其进行了较多的理论研究,国家也出台了《关于在中小学加强写字教学的若干意见》等一系列文件,不仅强调了学生使用正确的握笔手势进行书写的重要性,而且明确定义了中小学生正确书写时的握笔手势。然而当前的握笔手势和书法教学主要采用面授和视频教学,缺乏自动
随着互联网的不断普及和服装电子商务的兴起,越来越多的用户通过电商平台购物服装,网上购买服装已经逐渐成了人们的重要消费方式之一,如何在海量的服装商品中高效准确地检索出用户心仪的服装成为了热门的研究方向。目前“以图搜图”技术主要依赖于整张图像特征提取的结果,不能关注到服装的部件,并且服装图像拍摄时背景一般比较复杂,导致服装图像检索准确率低,因此,本文提出一种基于部件检测与分割的服装图像检索方法。本文调
点击率预测一直是在线广告和产品推荐领域中非常受欢迎的问题,点击率的小幅增长可以带来可观的利润回报。近年来,由于机器学习和人工智能技术在自然语言处理及计算机视觉等众多领域中取得了令人瞩目的成绩,各研究机构和互联网企业纷纷将相关知识应用于点击率预测问题,并为此做了许多研究和探索,取得了诸多出众的成果。本文通过综述近年来点击率预测相关的论文发现:点击率预测的准确性主要受到数据特征规模大、维度高和稀疏性等
在筒子纱染色领域,卷绕密度的测量主要为传统的人工理想化计算和利用硬度计间接测量,存在测量结果准确性不理想、测量过程耗时较长等问题,且仅能以抽样测量的方式进行,以样本数据代替整体,无法对全体对象实现精确测量,导致对筒子纱染色质量的控制存在不确定性,完全不能满足生产的高效率、高精度、高质量需求,且生产环境较恶劣,对工作人员的健康存在安全隐患。研究高精度、高性能的筒子纱卷绕密度自动化测量技术,可解决传统