一类非齐次树上的马尔可夫链场的若干强偏差定理

来源 :河北工业大学 | 被引量 : 0次 | 上传用户:a82345678
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
树上随机场是随机过程理论在树,这一最新的数学模型上的应用,它产生十倩息理论的编码和译码问题.在一个序列中状志和状态序偶出现的频率是否道从大数定律直接影响到编译码方法的优劣,所以这一领域一直足众多学者研究的对象。在概率论的发展史上,偏差定理的研究一直占重要地位。强偏差定理也一直是概率论研究的中心问题之一。 本论文共分为四章: 第一章是绪论,介绍本论文的选题背景,并将已有的工作进行扼要的介绍; 第二、三章是本论文的主体,给出了一类特殊非齐次树上可列状态马尔可夫链的若干强偏差定理.证明中通过构造一非负上鞅,然后利用Doob鞅收敛定理,研究了一类非齐次树上的马氏链场的若干强偏差定理.并将强偏差定理推广到了二重马氏链上面,得到了特殊非齐次树上二重码尔可夫链关十三元状志序组出现频率的若干强偏差定理。 第四章是结论,总结性的列出了本文的主要结果。
其他文献
本文主要讨论C(K)上的某些算子的性质与其表示测度的关系,文章一开始讨论了C(K)空间上有界线性算子表示定理,并给出了C(K)空间上有界线性算子到C(K)上算子的转换,以及一些相关定
代数攻击(Algebraic Attack)是近年来研究的一种对几乎所有类型的密码体制都构成威胁的攻击方法,由于它的计算复杂度依赖于密码学中布尔函数的代数免疫AI(Algebraic Immunity
本文包含两部分内容。第一部分,考虑的是具有非线性局部化反应源项的抛物型方程组的解的整体存在与有限时刻爆破。第二部分,考虑带有齐次Dirichlet边界条件的非局部退化奇异半
最优控制理论是现代控制论中的一个重要分支。R.E.Kalman首先提出对线性系统采用积分二次型最优评价指标,从而形成线性二次最优控制(LQR)问题。根据数学模型不同,又可以将最优
本文首先把二项随机图模型进行了推广,提出了两顶点连接的概率服从拟几何分布的随机图模型。在此基础上利用随机分析理论,分析了此类随机图的几何性质。提出了计算此类随机图的
本文讨论了离散混合时滞细胞神经网络模型,和连续时间混合时滞Cohen-Grossberg神经网络模型解的动力学状态。我们利用重合度连续性定理,Brouwer不动点定理,Lyapunov函数方法,
设k为交换环,A为k-代数,C为k-余代数,H为弱Hopf代数。本文首先在A上定义一种新的乘法,得到了一种扭曲代数A,这里τ∈Conu(C,End(A)),进一步,如果τ是卷积可逆的,本文证明了(A,C,ψ)上的
本文主要研究了逐段扩散过程的可料特征与若干性质Gerber于1970年将经典的复合Poisson模型加入了独立的扩散扰动,是复合Poisson模型的进一步扩展.将此模型作进一步的推广,结合
设H是复的可分的Hilbert空间,L(H)表不所有作用在H上的有界线性算子组成的集合本文利用Banach代数和复几何的工具,研究了Cowen Douglas算子这类几何算子及其换位代数的性质,重点