全方位移动机器人数据驱动无模型自适应控制研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:yaonulio
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,移动机器人在民用、军用、商用等各个领域已经有着越来越广泛的应用。其中,由于全方位移动机器人可以独立且同时进行平移和旋转运动,所以更适合于对机动性要求高的狭窄空间,如工厂、仓库和医院。因此,如何实现全方位移动机器人精确、可靠、稳定的轨迹追踪控制已经成为机器人领域研究的热点之一。本文以全方位移动机器人为研究对象,针对机器人建模和标定参数过程复杂耗时、机器人模型存在不确定性以及存在外部扰动的问题,以无模型自适应控制为主要方法,研究了在不需要任何数学模型和参数信息的情况下全方位移动机器人的轨迹追踪问题。主要研究内容如下:首先,本文简单介绍了实验室自建的全方位移动机器人平台,并且为了仿真中更好的验证所提控制方法的有效性,推导了全方位移动机器人的运动学和动力学模型。然后,针对机器人建模复杂费时、模型存在不确定性以及存在外部扰动等问题,本文提出一种适用于全方位移动机器人的无模型自适应控制方法。即首先定义了一个新的旋转坐标系,以便将无模型自适应控制方法应用于轮式移动机器人。然后在典型的无模型自适应控制方法中引入了坐标变换矩阵和终端滑模控制,以保证系统收敛,并对所提控制方法进行了稳定性分析。不仅如此,还提出了一种具有明确物理解释的伪雅可比矩阵初始值设定方法。此外,通过仿真和实验验证了所提控制方法的有效性。最后,针对无模型自适应控制方法存在的问题,如伪雅可比矩阵存在估计误差、低阶数据模型不能包含全部非线性动态,本文提出基于神经网络和并发学习补偿的无模型自适应控制方法。即首先建立低阶动态线性化数据模型,然后采用神经网络估计伪雅可比矩阵和未被包含的非线性动态,由并发学习更新神经网络的权重,并给出了基于神经网络和并发学习补偿的无模型自适应控制器。此外,对所提控制方法进行了稳定性分析,并在仿真和实验中,验证了所提控制方法的有效性。
其他文献
二氧化氮是一种有毒气体,其主要来自于汽车尾气排放、重工业等。大量二氧化氮存在于空气中,在污染大气的同时导致酸雨、光化学烟雾等环境污染现象。近年来,作为重要大气污染源的二氧化氮的准确可靠检测日益引起人们的重视,从而产生了对高性能气敏传感器的迫切需求。发展高性能气敏传感器,必须提升气敏传感器的各项性能参数,包括灵敏度、选择性、稳定性、工作温度、响应/恢复时间等。本论文针对气体传感器目前的研究与发展趋势
近年来,随着深度学习和人工智能的不断发展,人脸检测和人脸识别已经被广泛应用于医疗应用、人机交互系统、机场检查等领域。目前,如何提升人脸检测和人脸识别的精度是近年来关注的热点。本论文针对提升人脸检测和人脸识别的精度,主要内容包括:1、实现了MTCNN人脸检测模型,并对MTCNN模型进行了改进。将深度可分离卷积引入MTCNN网络,将其替代传统卷积,减少卷积运算量;调整三个卷积神经网络结构的感受野,使得
人脸补全是计算机视觉和图像处理领域中的一个重要话题。它的核心任务在于还原图像信息,使生成的补全结果与真值结果尽可能保持一致。由于现有的人脸补全方法没有对补全结果与真值结果的一致性进行强有力的约束,且忽视了人脸图像的对称性特征,从而导致无法对人脸的任意部位,尤其是对称部位,生成真实自然且与真值结果一致的补全结果。除此之外,高分辨率人脸图像已经成为主体,但是现有方法大多都无法适用于高分辨率人脸图像补全
近年来中国道路交通发展迅速,交通状况愈发复杂,基于目标检测的自动驾驶技术逐渐成为研究的重点。交通标志检测作为自动驾驶领域最重要的组成部分之一,受到了社会各界的广泛关注,其中基于卷积神经网络的目标检测算法被认为是解决交通标志检测问题最有效的办法之一。交通标志对检测精度及检测速度方面均有较高的要求,以Tiny-YOLOv3为代表的轻型网络虽然满足对检测速度的要求但检测精度普遍较低;以YOLOv3为代表
气液固三相流广泛存在于自然界和工业生产过程中,对其各相分布测量具有重要意义。当前传统的流体检测方法难以针对气液固三相流的各相分布进行无损、非侵入式的在线检测。电学层析成像技术(Electrical Tomography,ET)是一种非侵入式、结构简单、成本低廉、无核素辐射的新型无损检测方法,在多相流检测领域具有广阔的应用前景。单模态的电学层析成像方法多是针对两相流的分相识别检测,当流体多于两相时,
紫外(UV)探测技术几乎不受环境背景噪声影响,在生物分析、发射器校准、空间探测等方面得到了广泛应用,而紫外光电传感器是其核心。当今,紫外光电传感器多基于单原子硅、Ⅲ族氮化物和金属氧化物材料。硅和Ⅲ族氮化物成本高、制备工艺复杂,发展受到限制。宽带隙金属氧化物半导体材料,如ZnO、SnO2等二元氧化物和Zn Ga2O4、ZnSnO3等三元氧化物,对紫外光也具有良好的UV光敏性能;且其物化性质稳定、制备
电主轴是在数控机床领域出现的将机床主轴与主轴电机融为一体的新技术,电主轴与直线电机技术、高速刀具技术一起,将高速加工推向一个新时代。作为数控机床的核心部件,电主轴的热误差的抑制对减小机床整机热误差,提高加工精度具有十分重要的意义。本文以某精密卧式加工中心电主轴为研究对象,从生散热建模、生散热功率匹配等问题进行研究,进行热主动控制实验及考虑主轴实际负载的热特性实验方面进行研究。本文分析了电主轴单元的
今年的高考结束后,每个省的成绩陆续公布,有记者采访了一些优秀学子,发现了一个现象,这些优秀学子们的家庭教育方式都有相似的地方。自高考结束以来,最火热的"学霸网红"莫过于被清华大学录取的武亦姝了,关于她的报道,点击率非常高。
期刊
超分辨率技术能够在硬件设备性能受限情况下,利用算法提高图像分辨率,恢复图像细节,获取高质量的图像。基于卷积神经网络的深度学习方法能有效提取图像内部特征,学习低分辨率图像与高分辨率图像之间的映射关系,较好地实现超分辨率重建。本文基于卷积神经网络,针对现阶段超分辨网络的效率问题进行了一系列研究,主要工作如下:针对目前基于深度学习的超分辨网络模型较深,参数量、运算量较大,无法适应于实际场景等问题。本文在
帕金森疾病(Parkinson’s Disease,PD)是由基底核网络中多巴胺的缺失导致的,会产生基底核网络异常的β振荡现象。多巴胺的缺失首先影响了纹状体的输出,继而影响了整个基底核网络的正常的生理功能。纹状体包括快速放电中间神经元(Fast Spiking Interneuron,FSI)和中间棘突神经元(Medium Spiny Neuron,MSN)两种神经元。深度脑刺激是目前治疗PD的有