基于微波光子学的射频自干扰消除系统关键技术研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:iceqi77
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
5G时代下新设备新业务带来的数据流量的暴增与日益紧缺的频谱资源形成矛盾,同时同频全双工通信是解决这一困境的关键技术之一。该技术面临的主要挑战是收发天线间严重的自干扰问题,目前实现自干扰消除主要从天线域、模拟域以及数字域三个层次共同进行。在各类模拟自干扰消除技术中,微波光子学由于其天然的优势,成为了一种有效解决方案。本文围绕基于微波光子学的射频自干扰消除技术开展了理论分析与实验研究,主要研究内容和创新成果如下:
  (1)研究了微波光子学自干扰消除系统非线性和自干扰消除性能的量化指标——无杂散动态范围(SFDR)和干扰消除比。分析了直接调制和马赫曾德尔(MZ)型调制两类常用电光调制类型的基本原理,从集成度、器件、稳定性以及功能延伸四个方面对比了双调制器和单调制器两类系统。
  (2)研究了基于双平行马赫曾德尔调制器(DP-MZM)的自干扰消除系统的工作原理,在传统方案的基础上提出了偏置点优化方案,增大了期望信号输出功率和系统稳定性。实验结果表明,该方案实现了对2.5~6GHz频段内200MHz宽带自干扰信号35dB以上的消除,且接收信号和参考信号臂的SFDR均达到96dB·Hz2/3以上。提出了面向DP-MZM自干扰消除系统的自动控制方案,完成了自动控制模块设计与制备。
  (3)提出了基于DP-MZM的集成自干扰消除、光电振荡器(OEO)以及下变频的多功能射频前端方案,实验验证了其可行性。实验结果表明,该方案产生了频率10GHz、相位噪声-108.66dBc/Hz@10kHz的本振(LO)信号,实现了期望信号从中心频率12.6GHz到2.6GHz的下变频,并完成了对带宽150MHz/300MHz的自干扰信号27dB以上的消除。
其他文献
可调光纤Mach-Zehnder干涉滤波器因具有与光纤兼容、低插损和弱反射等特点在光纤通信、光纤传感以及激光器波长调谐等领域具有重要应用价值。与电光、声光等调谐方式相比,全光可控的光纤Mach-Zehnder干涉仪通常采用一对耦合器构成,并在其中一个干涉臂中引入光敏材料,这种结构具有易实施、调谐精度高和成本低等优点。为增强光纤消逝场与光敏材料的作用强度,需要制备束腰直径小至10μm的拉锥光纤。在耦合器构成的光纤Mach-Zehnder干涉仪中光沿不同的光纤传输,外界干扰因素对两个干涉臂的影响不同将导致滤波
表面增强拉曼散射(Surface enhanced Raman scattering,SERS)是自1928年印度科学家Raman发现拉曼散射以来又一重大发现,可以有效放大拉曼散射光。由于其具有高灵敏度、高选择性等优点,已经成为生命医疗、食品安全、药物科学等众多领域的有力检测手段。然而在实际应用过程中,由于仪器的温漂、基底表面吸附分子数目的不确定性、纳米结构的难以控制性、化学增强的不稳定性以及重现性较差等问题,使得目前SERS技术仍处于定性或半定量分析状态。探索提高SERS定量检测的准确性是目前的研究焦点
作为一种新型分子成像模式,X射线荧光CT(XFCT)将X射线荧光分析技术和CT成像技术相结合,利用入射X射线激发样品内部待测元素发射荧光,通过特定的算法对出射荧光投影进行重建,不仅可以有效分辨待测元素的种类,同时精确重建元素的浓度和空间分布,在生物医学、材料科学、地球科学等领域具有广阔的应用前景。
  当前,基于管激发源的XFCT成为研究热点,但散射噪声大等问题严重干扰了荧光信号的有效检测,导致成像系统信噪比较低,图像质量较差,探测极限难以满足要求。探寻散射噪声能谱分布规律,准确估计散射噪声,分析散
一直以来某些工业泄露气体(如六氟化硫、甲烷等)的红外成像探测系统主要采用高灵敏的致冷型面阵探测器,导致系统复杂,成本高,阻碍其普及应用。最近发展的单像素成像技术采用相对低成本的高灵敏单元探测器来实现目标物体的空间成像,而日益收到光电成像领域研究人员的关注。若将其应用于气体的红外成像探测则可以大大节省面阵探测器带来的成本问题。目前的单像素成像主要应用于鬼成像,将光源出来的光通过设备分成两束光分别处理和探测,目标光经过随机排列的矩阵通光结构后,被单像素探测器接收,最后根据随机矩阵的信息以及探测信号进行空间关联
二氧化钒是一种具有特殊相变性能的功能材料.随着温度的变化,二氧化钒会发生从半导体态到金属态的可逆变化,同时,电阻率和光谱透射率等物理性质也发生突变,其相变点在68℃附近,接近室温.二氧化钒的应用非常广泛.目前主要用在热探测仪或夜视仪的红外焦平面上,西方国家已经有产品,并在军队中广泛使用.此外利用其光学相变性能,二氧化钒薄膜相变光开关以其纳秒级的开关时间,将成为全光通讯的理想选择之一;二氧化钒薄膜还应用在抗激光辐射上,对现代战争中的卫星探测窗口的防护意义重大,国外已经有相关报道.国内二氧化钒的研究应用还处于
在现代生物医学领域的研究中,例如药物研发、体外诊断等。通常都受限于对样品的观测通量,高通量的观测工具可以大大减少研究周期和研究成本。微流控技术作为一项新兴的工程技术,在生物医学领域得到广泛应用。其中的重要分支液滴微流控技术,可以快速的生成条件可控、反应灵敏的液滴微反应器,为高通量观测的研究提供了巨大的帮助。然而针对微流控液滴的观测技术研究目前还停留在起步阶段,现有的针对液滴的观测技术如宽场荧光、共聚焦、流式检测,要么观测通量较低无法体现液滴微流控技术的优势,要么不具备三维观测的能力,从每个液滴样品获得的信
利用电光晶体的光折变效应产生位相共轭光已经成为了一种重要的光学位相共轭方法.光折变位相共轭具有建立阈值低、保真度高和大损伤阈值等优点,因而具有广泛的用途.在该论文中,我们针对Ce:BaTiO<,3>晶体光折变自泵浦位相共轭器的特性和应用做了全面深入的研究.通过大量的实验全面研究了Ce:BaTiO<,3>自泵浦位相共轭特性:在低重复频率(1Hz)、532nm调Q激光泵浦时最高获得了21.5%的位相共轭反射率,而此前报道过的建立位相共轭脉冲光最低重复频率是10Hz;实验中发现在532nm~790nm波长范围内
相较于传统的落射式荧光显微镜,光片荧光显微镜(LSFM, Light-sheet Fluorescence Microscopy)与组织透明化技术的结合,以其高通量、高轴向分辨率、低光毒性等优点,为整体器官这类宏观级大样本的解剖学显微成像带来了成像速度和空间分辨率上的改进。再相较于常规的高斯光片显微镜,新型的贝塞尔光片显微镜在前述的基础之上,还兼具大视场和高轴向分辨率这两个优点,能为器官样本的整体三维成像带来更多的益处。
  与先进的成像手段相对应,基于三维图像的可视化和定性/定量数据分析是衔接获取
二维钙钛矿因其具有更好的环境稳定性、天然量子阱、层状结构和独特的光学性质引起越来越多的关注。二维钙钛矿丰富且可调制的光电特性使其在太阳能电池、发光器件、光电探测器和激光器中具有广泛的潜在应用。为了进一步进行基于二维钙钛矿的器件设计和性能改善,理解二维钙钛矿的基础光学性质至关重要。为此,我们系统地研究了温度和应力对二维钙钛矿带隙的调控。
  首先,本文利用水热法成功合成二维钙钛矿(n-BA)2(MA)n?1PbnI3n+1(n=1-5)和(iso-BA)2(MA)n?1PbnI3n+1(n=1-3)并
光束通过散射介质如天空中的雾霾、海水以及生物组织等会发生光学散射现象,导致光束在散射介质后聚焦能力下降,由于散射光的影响探测器无法探测到真实的物理信息,因此严重限制了在光纤通信、生物医学成像等领域的应用。由此可见,如何通过散射介质实现高质量成像成为一项重要挑战。本文提出了一种基于深度学习的图像复原方法,可以恢复在光片荧光显微成像过程中由厚生物组织散射引起的图像质量下降,显著提升了三维光片荧光显微图像的性噪比和分辨率,而无需复杂的光学设施或迭代重建算法。本论文的主要工作内容如下:
  本文通过构建散射