【摘 要】
:
随着云计算、大数据、物联网等技术的飞速发展,互联网应用的种类层出不穷,引发了数据规模的爆炸式增长,也带来了严重的信息过载问题。作为解决“信息过载”的重要手段之一,推荐系统已经得到广泛应用。但是传统的推荐系统存在冷启动、用户-项目评分矩阵的极度稀疏性等问题。除了推荐系统的评分信息外,用户对项目的评论信息也包含了丰富的用户兴趣和项目特征信息,有助于更准确地学习用户和项目表示。近年来,将评论融入推荐模型
论文部分内容阅读
随着云计算、大数据、物联网等技术的飞速发展,互联网应用的种类层出不穷,引发了数据规模的爆炸式增长,也带来了严重的信息过载问题。作为解决“信息过载”的重要手段之一,推荐系统已经得到广泛应用。但是传统的推荐系统存在冷启动、用户-项目评分矩阵的极度稀疏性等问题。除了推荐系统的评分信息外,用户对项目的评论信息也包含了丰富的用户兴趣和项目特征信息,有助于更准确地学习用户和项目表示。近年来,将评论融入推荐模型引起了越来越多的关注。然而,如何自动有效地获得更深层的用户和项目评论特征,如何更好地将评论与评分等多源异构数据相融合,值得进一步研究。本文开展了基于评论的深度推荐模型和算法的研究,完成的主要工作如下:(1)现有的基于评论的推荐方法通常使用相同的模型来学习所有用户和项目的评论表示,但是,不同的用户有不同的偏好,不同的项目有不同的特点。因此,对于不同的用户项目对,同一个词或类似的评论可能具有不同的信息性和不同的重要程度。基于此,本文提出了融合评论信息的双重注意力深度推荐模型DARM(Dual Attention Recommendation Model with Reviews)。该模型分别对用户评论嵌入和项目评论嵌入进行关键信息识别构建局部注意力,并通过项目评论特征对用户评论特征构建关键评论识别的交互注意力。通过基于深度学习和双重注意力机制提取的评论特征,以及对评分信息进行建模得到的评分特征,最终通过因子分解机进行融合并得到评分预测。(2)由于不同的评论具有不同的信息性,而且许多评论都是嘈杂的,甚至是误导性的,因此将评论的有用性信息结合起来可以帮助更好地利用评论进行推荐。基于此,本文在DARM模型的基础上加入了评论有用性,提出了DARM-Help模型,该模型通过定义评论的有用性并计算其得分来计算评论的注意力权重以便更好地提取用户与项目的评论特征。由于许多评论没有有用性得分,该模型提出了融合评论有用性预测与评分预测的多任务学习方法。(3)在Amazon和Yelp的真实数据集上进行了上述模型及算法的实验,以验证其推荐性能。实验结果表明,本文提出的DARM模型和DARM-Help模型相比其他基于评论信息的评分预测算法具有较低的MSE,即具有更好的推荐性能,并且DARM-Help模型比DARM模型的推荐效果更佳。
其他文献
人口增长和城市化水平的提高不断刺激着建筑需求,大规模的建设带来巨大的资源压力,也对环境保护带来严峻的挑战。兼顾效率和环境友好的装配式建筑日渐成为中国建筑业发展的主流。在国家大力推广信息化、市场化的大背景下,总承包模式和BIM技术的应用,也成为装配式建筑发展的大势所趋。工程计价是装配式建筑发展的重要环节,现行的装配式建筑计价方式以工程量清单计价为主,但由于计价依据不完善、信息化应用不深,装配式建筑造
随着深度学习的兴起,自然语言处理在中文领域快速发展,其中文本表征是不可或缺的基础编码层。成语在书面和口语中使用频繁,在中文表意中有着非常重要的作用,地位不可替代。因此,高效的成语表征对中文自然语言处理的进一步发展至关重要。成语是中文独特的语言现象,它固定的四字结构,形式简洁,内容丰富,带来了两大特性:非语义合成性和意义整体性,即:它的意义不能简单通过字的含义相加,而是一个整体。这两个特点导致目前主
针对铁路货车的行车安全检测对于保证货车平稳运行至关重要,而轮对的安全状况是货车运行和运维过程中的重点关注问题。现阶段轮对踏面损伤检测在非营运状态下进行,检测速度慢、效率低、耗费大量人力物力,需要探索更为快速高效便捷的轮对踏面检测方法。本文围绕铁路货车轮对踏面损伤机理、温度场有限元仿真、运动模糊图像复原、图像特征提取等方面展开理论和实验研究。为检测出运动状态下轮对踏面的损伤情况,针对运动模糊红外图像
近年来,随着计算机和通信技术的迅速发展,现实生活场景中涌现了不同的时空众包平台,例如滴滴、美团外卖等。不同于传统的众包平台,时空众包平台在任务分配阶段需要获取众包工人的真实位置以实现有效的任务分配。由于大多数时空众包平台是不可信的,众包工人的位置信息容易泄露,导致工人不愿意参与任务分配。因此,在时空众包中保护工人的位置隐私显得尤为重要。除了工人位置外,任务位置在分配阶段也应被保护,因为众包平台可能
无人驾驶技术与云计算、人工智能等技术的深度融合,为智能交通领域的发展带来深刻的变化。无人驾驶的核心技术主要包括环境感知、定位与建图、规划与决策和智能控制等,而高精度地图是L4级及以上无人驾驶的核心技术。虽然国内外学者针对高精地图生成方法的研究取得丰硕的成果,但其过程仍存在自动化程度低、更新速度慢的问题。针对这一现状,论文针对基于3D点云的高精地图的环境图层自动生成问题,采用基于深度学习的点云语义分
近年来伴随着C-V2X(Cellular Vehicle to Everything)等车联网技术的快速发展,自动驾驶和智能驾驶等智能交通业务需求不断增加,催生了一系列延迟敏感型、计算密集型的车联网智能应用。云计算架构因为日渐拥塞的回程链路和距离用户过远导致的服务响应延迟而难以满足智能交通要求的高可靠低时延。移动边缘计算(Mobile Edge Computing,MEC)应运而生为新的技术应用范
随着信息技术迅速发展以及网络服务的普及,数据规模实现井喷式发展,社会逐步进入了信息化的大数据时代。作为解决信息过载的重要方法,推荐系统得到了迅速地发展,同时也在人类生产、生活的各个方面发挥着重要的作用。多行为推荐系统作为推荐系统的一个分支,虽然起步较晚,但是由于多行为数据的丰富性及应用场景的广泛性,近些年来多行为推荐系统也得到了社会各界人士的青睐。目前多行为推荐系统在如何合理利用行为之间多等级偏好
计算机断层成像(Computed Tomography,CT)因为具有无损、高分辨、没有重叠影像等诸多优点,被广泛应用于安检、医疗和工业等领域。通常,传统CT系统需要完全角度投影数据来进行图像重建。然而,由于实际条件的限制,有时无法获得完全角度投影数据,由此引出了有限角度投影数据CT图像重建问题。理论上,有限角图像重建问题是一个不适定的问题,且这种不适定性会随着缺失角度的增加而变得更加严重。因此,
随着科学技术的快速发展,海量数据充斥着人们的生活,信息过载问题日益严重。推荐系统逐渐成为人们获取个性化信息的有力工具,帮助人们在海量信息中获取有用信息,并且已经成功应用到各行各业。基于协同过滤的推荐方法通过利用用户和项目的行为数据来学习用户和项目的特征表示,逐渐成为主流的推荐方法。但是现实世界中用户-项目评分矩阵具有高度稀疏而且分布不均匀的特点,当推荐系统仅考虑用户和项目之间的评分矩阵信息时,其性