【摘 要】
:
随着航天、航空以及核能电站等领域的设备集成度不断提高,其内部工作空间越来越狭小,环境越来越复杂,内部作业要求越来越高。而蛇形机器人因其较强的灵活性与柔韧性,能够较好地完成在狭小空间下的检修等任务。考虑到绳驱方式可以减少机器人体积与重量,本文提出了一种面向狭小空间作业的绳驱式蛇形机器人设计方案,并研究了其控制策略。本文主要工作如下:(1)本文提出了一种绳驱式蛇形机器人设计方案。对蛇形机器人的关节、连
论文部分内容阅读
随着航天、航空以及核能电站等领域的设备集成度不断提高,其内部工作空间越来越狭小,环境越来越复杂,内部作业要求越来越高。而蛇形机器人因其较强的灵活性与柔韧性,能够较好地完成在狭小空间下的检修等任务。考虑到绳驱方式可以减少机器人体积与重量,本文提出了一种面向狭小空间作业的绳驱式蛇形机器人设计方案,并研究了其控制策略。本文主要工作如下:(1)本文提出了一种绳驱式蛇形机器人设计方案。对蛇形机器人的关节、连杆以及驱动箱等硬件结构,给出了详细的硬件整体结构与组成部件模型图。根据本文设计的蛇形机器人结构,建立了蛇形机器人的运动学与动力学数学模型,为机器人控制策略的研究奠定了基础。(2)针对蛇形机器人传统PID控制策略稳定性差与响应速度慢的问题,提出了一种基于烟花算法优化的BP神经网络PID控制策略。首先,利用BP神经网络自学习与自适应能力,提高PID控制策略的响应速度与稳定性。其次,为防止BP神经网络陷入局部最优值,利用烟花算法对BP神经网络初始权值进行优化,以加快BP神经网络的收敛速度,防止局部最优值。最后,基于MATLAB对提出的控制策略进行了仿真,仿真结果验证了该控制策略具有更好的稳定性与位置控制精度。(3)针对在某些复杂环境下,蛇形机器人建模困难的问题,本文提出了一种基于深度确定性策略梯度的数据驱动控制策略。该控制策略利用深度确定性策略梯度的学习与决策能力,训练蛇形机器人控制系统的离线与在线输入输出数据,以设计出机器人控制器。该控制策略的仿真基于MATLAB强化学习工具箱与蛇形机器人控制系统的数据,仿真结果验证了该控制策略具有抗干扰性、稳定性、收敛性以及较高的位置控制精度。(4)样机制作。根据本文提出的蛇形机器人设计方案,采用3D打印技术制作硬件部件并选择驱动设备,完成了蛇形机器人样机组装。本文通过对样机实验,验证了蛇形机器人设计方案的可行性及控制策略的有效性。
其他文献
近年来人工智能的发展越渐火热,计算机视觉领域的研究发展越来越贴近我们的日常生活。随着我国全面进入小康社会,人们对于饮食健康的问题日益重视,如日常生活的饮食监控、营养分析、菜品推荐系统等等。因此,基于计算机视觉的菜品图像识别技术成为了当前研究的热点之一。但是,目前的菜品图像识别的研究应用多放在西餐和日料中。中式菜品由于其种类繁多复杂,不同菜品之间也有可能非常相似,相同菜品也有可能差异过大。因此,对于
近年来,伴随着社会信息化程度的提高,作为计算机视觉代表性任务之一的视频行为识别,因其在智能监控、自动驾驶、媒体分析和机器人等领域具有广泛的应用前景,受到了越来越多研究者的关注。同时在深度学习等技术蓬勃发展的背景下,涌现出大量基于深度神经网络的视频行为识别研究。虽然前人已经完成了大量的研究工作,但是依然存在大量挑战。首先,由于人类行为在视频时序和场景变化上存在的联系,如何充分利用时序上下文信息,对视
CAN总线是现代汽车电子技术中最重要的串行通信总线,因CAN总线的可靠性、实时性、互操作性、灵活性、经济性等特点,被广泛应用于各种汽车电子部件的通信与控制系统中,CAN总线通信是基于优先级仲裁与调度的通信系统,因此,研究基于CAN总线的调度对提高CAN总线的利用率与系统通信性能具有重要的意义。论文主要研究基于FIFO和优先级序列的CAN总线系统,提出一种模型优化的思路,具体研究内容分为以下几个部分
基于优化的元学习是一种旨在从指定的数据/任务中学习一组敏感的模型初始化参数的机器学习算法。该算法的优点在于当遇到一组新数据/一个新任务时,训练好的模型能够仅仅通过若干步梯度优下降化便在新任务上的测试集上获得良好的泛化表现。然而,从泛化性能的角度来看,我们认为传统的基于优化的元学习算法包含两方面缺陷:(1)由于每一个训练任务中包含的训练样本数量过少,算法在学习过程中使用过参数化网络时容易产生过拟合现
情感分类是自然语言处理领域内的基本任务之一,情感分类又分为粗粒度和细粒度情感分类。随着时代的发展,粗粒度情感分类已逐渐无法满足人类的需求,所以细粒度情感分类逐渐成为了研究重点。细粒度情感分类又称为方面级情感分类,旨在判断句子中某个具体方面的情感极性。本文的核心研究内容就是使用基于深度学习的方法进行方面级情感分类。本文的主要创新与工作如下:(1)大多数基于传统的循环神经网络和注意力机制的方面级情感分
轨迹规划与轨迹优化一直是备受存眷的研究热门,轨迹规划是轨迹优化的前提。仅使工业机器人完成指定任务,已不能满足目前需求,需要尽可能缩短运行时间来提高工作效率和减少冲击以延长使用寿命。本文以六自由度工业机器人为研究对象,在关节空间中采用五次非均匀B样条进行插值,对已规划好的轨迹,以改进的自适应遗传模拟退火算法为优化手段,将时间-冲击作为优化目标,通过改变权重获得时间、冲击以及综合最优轨迹。本文主要研究
随着城市化进程的不断加快,城市路网内部结构也更加复杂,路网中发生的紧急事件很大程度地危及到人们的生命财产安全。紧急事件发生时,城市应急中心会派出特殊授权车辆到达事故发生地实施救援工作,车辆到达时间越短,突发事件造成的损失就会越小。虽然特殊授权车辆具有道路优先通行权,但是实际行驶过程中也会受到车辆拥堵的影响,难以实现优先通行造成极大的延误。因此,在减少对普通车辆产生影响的前提下,本文围绕如何使特殊授
随着成像技术的普及与发展,数字图像逐渐成为了一种重要的信息传递媒介。但是,在实际的应用场景中,由于成像条件及外界干扰等因素的影响,存在着分辨率低、数据缺失等质量退化问题,图像恢复旨在研究如何从退化图像恢复出来理想图像,从而达到改善图像质量的目的。深度卷积神经网络通过卷积运算的层级化处理能够有效获取图像的层级特征表示,为图像恢复带来了新的建模方法,带来了图像恢复算法性能的有效提升,使其研究进展有了实
随着城市化进程的不断推进,我国公共建筑能耗随着面积的增加而大幅上涨。在这种背景下,目前市面上常见的公共建筑用电监控系统,大多采用智能电表配合总线的方式进行现场数据采集,存在布线工程量大、维护不便等问题。同时,一些现有建筑用电监控系统对异常用电的行为不能进行有效的管控,无法及时排除安全隐患,并且容易造成电能的浪费,制定相关政策以及进一步推进公共建筑节能工作较为困难。本文在研究现有建筑用电监控系统的基
近年来,海洋科学研究越来越多地依赖自主水下航行器和遥控水下航行器拍摄的水下图像。然而,由于复杂的水下成像环境,自然光在水下会发生吸收及散射效应,导致水下图像出现严重的可视性问题,具体表现为色偏效应、对比度不足、清晰度低。严重的失真不仅影响水下图像的质量,而且限制了水下视觉任务的进展。目前,水下图像处理方法主要包括传统方法和基于深度学习的方法,其中,传统方法由于水下复杂的物理和光学因素,在不同的水下