G期望下随机微分方程的分布性质

来源 :天津大学 | 被引量 : 0次 | 上传用户:eimayao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究了由G布朗运动驱动的几类随机微分方程分布性质:包括与维数无关的Harnack和推移Harnack不等式及其应用;可加泛函的路径无关性的充要条件;泛函型随机微分方程的保序性.全文共分如下六个部分.在第一部分,我们概述了本文的研究背景并回顾了与维数无关的Harnack不等式以及G期望、G-布朗运动和G-Girsanov变换的基础知识.在第二部分,我们建立了可加非退化噪声情形下由G布朗运动驱动的随机微分方程的Harnack和推移Harnack不等式,推广了线性期望框架下的相关结论并给出了 G期望框架下Harnack不等式在拟不变期望方面的应用.在第三部分,我们建立了可乘非退化噪声情形下由G布朗运动驱动的随机微分方程的Harnack和log-Harnack不等式,推广了线性期望框架下的相关结果并证明了梯度估计.在第四部分,我们建立了由G布朗运动驱动的随机Hamiltonian系统的Harnack和推移Harnack不等式并给出了形如|▽Ptf|≤c(p,t)(Pt|f |p)1/p,f ∈Cb+(Rd),p>1,t>0的非线性半群Pt的梯度估计.作为Harnack不等式的应用,我们证明了由G-布朗运动驱动的且由满足某种可积性条件的漂移项扰动的退化的随机微分方程弱解的存在性.在第五部分,我们研究了 G布朗运动驱动的随机微分方程的可加泛函As,tf,g的路径无关性,得到了可加泛函As,tf,g路径无关的充要条件.在论文最后一部分,我们使用概率的方法给出了由G布朗运动驱动的路径依赖的随机微分方程比较定理的充分条件且当方程系数满足一定连续性条件时,该充分条件也是保序的必要条件,该结果推广了线性期望框架下以及G期望下不带延迟情形下的相关结果.
其他文献
本博士论文研究了张量互补问题的理论与算法。互补问题是运筹学与计算数学的一个交叉研究领域,并广泛应用于科学研究和工程技术等方面。张量互补问题作为线性互补问题的推广,非线性互补问题的子类,自2015年提出后,引起了国内外优化与数值代数等领域的关注,并得到了快速的发展。本文针对张量互补问题的讨论分为两部分:在理论方面,主要研究了张量互补问题解的唯一性、稳定性,解集的非空紧性,以及解映射的连续性;在算法方
本文主要研究含Landesman-Lazer型条件发展方程的动力学,解的多重性和含约束条件渐近自治系统的最终稳定性.第一章为绪论部分,主要介绍本文的研究背景及主要工作.第二章给出了文章中要用到的基础知识.第三章主要研究含Landesman-Lazer型条件的热方程在共振点处的分支问题.首先,在非线性项Lipschitz常数满足适当小性的假设下,我们建立非自治发展方程的不变流形.基于这一结论,我们将
钙振荡指细胞质内的钙离子(Ca2+)浓度随时间的振荡变化,它是钙信号的表现形式之一。而钙信号被称为是代表生命和死亡的一种生物信号,几乎参与了所有的生命活动,如:心脏的跳动,大脑储存和处理信息,伤口的愈合以及基因传递等。因此,研究钙振荡的非线性动力学特性,对于指导改善生命活动具有重要意义。细胞中储存钙离子的部位称为钙库。胞内最大的钙库是内质网,其中的钙离子浓度可以达到细胞质内钙离子浓度的上千倍,这个
分拆函数的Ramanujan-型恒等式和同余性质是组合数学和数论中的前沿课题.在该问题的研究过程中,产生了包括解析方法、基本超几何级数方法、组合方法和算法方法等多种研究方法.本文主要利用算法研究一类由推广η-商定义的分拆函数a(n),以及用解析方法研究Ramanujan一般分拆函数pr(n)的Ramanujan-型恒等式和同余性质.第1章首先介绍分拆函数p(n)和Ramanujan一般分拆函数pr
集合[(?)]={0,1,2,...,n}上的一个递增树(在随机过程领域通常称为递归树)是指顶点集为[(?)]的一个有根标号树,满足从根到叶子的任何一条路径的标号是递增的.递增树在组合学和随机过程领域均是非常重要的研究对象,具有丰富的研究成果.这篇学位论文主要研究递增树以及高维递增树的组合性质.论文分为四个章节.第1章介绍了递增树领域的基本概念和背景,并介绍了后续章节需要用到的相关知识和结果.第2
随着大数据时代的来临,现实中遇到的问题越来越复杂,如何建立更合适的数学模型来解决日益繁杂的实际问题成为近年来的一个热点。最近,作为矩阵的高维推广,张量或称为超矩阵逐渐受到大家关注,成为一个用于表征复杂数据的有效工具。使用向量和矩阵作为变量已经不满足一些实际问题的建模需求,需要以张量为变量进行建模。基于此,本文对张量空间上的优化问题进行若干研究,具体内容如下:首先,引入一类张量收缩积,它是张量与向量
近几十年来,具有时滞的分布参数系统的镇定与谱分析成为国际上的研究的热点和难点问题.本论文主要以一维和高维的时滞控制系统以及时滞的Timoshenko梁系统为对象,研究了时滞控制系统的反馈控制器设计和时滞Timoshenko梁系统的谱分析与解展开.具体内容如下:1.考虑了内部具有差分型时滞控制的一维Schr¨odinger方程的一致镇定问题.不同于已有的控制器设计方法,我们提出了一类新的反馈控制器设
本学位论文主要研究带有质量约束的非线性Schr(?)dinger方程:其中N≥1,f∈C(R,R),m>0是给定的常数,μ∈R作为Lagrange乘子出现.在第一章中,我们简要介绍问题的研究背景和研究现状,并陈述本文的主要结果.在第二章中,我们关心质量次临界情形.在一般质量次临界条件下,我们证明当N≥4时存在非径向对称解;而当N=4或者N≥6时,我们证得多个(有时是无穷多个)非径向对称解的存在性.
折纸是一门中国的传统艺术,其能够将平面材料通过折叠转换成三维结构。曲线折痕折纸是一种特殊类型的折纸,其使用曲线折痕图案通过非刚性折叠使平面材料具有不同的三维结构。近年来,由于其特殊的结构以及力学性能,曲痕折纸在工程和建筑领域中也有广泛的应用。本文通过考虑材料弹性弯曲能量响应和折纸可展性约束之间的相互作用,得到了一系列曲痕折纸图案,并且系统性的研究了弹性弯曲曲痕折纸的设计和应用。首先,本文通过将大弹
本文研究了非线性偏微分方程的分支理论及其应用.主要包含两方面:一是以动力系统,Conley指标理论为工具研究局部半流与非线性发展方程的全局动态分支理论及其应用;二是以变分方法,静态分支理论为工具研究耦合非线性Schr(?)dinger方程组的正解的性质和结构.在全局动态分支理论及其应用方面,我们首先从不变集分支的角度对完备度量空间上的局部半流建立了两个新的全局动态分支定理.这两个定理的条件易验证且