激光喷丸强化TC4钛合金电化学充氢慢拉伸试验研究及数值模拟

来源 :江苏大学 | 被引量 : 0次 | 上传用户:mcx1988929
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
TC4钛合金以其优良的物理和力学性能,在航空航天、海洋等领域得到了广泛应用。但是,钛合金对氢有很强的亲和力,即便进入材料中的氢含量很少,也会强烈增大其氢脆敏感性,导致氢脆断裂。本文为提升TC4钛合金关键零部件在海洋富氢环境中的服役寿命,采用理论研究、系列试验和数值模拟相结合的方法,分析激光喷丸诱导的应力和组织强化效应对试样残余应力、微观组织、氢致塑性损失及拉伸断口形貌特征的影响规律,揭示激光喷丸强化TC4钛合金的抗氢脆机理,主要工作如下:(1)从氢脆理论为出发点,结合氢扩散理论、应力诱导氢扩散理论,探讨氢对TC4钛合金的作用机制,建立氢扩散的控制方程和本构方程,研究强烈塑性形变诱导的应力强化、位错强化、晶界强化、孪晶强化以及细晶强化对TC4钛合金抗氢脆的增益机制。(2)开展典型TC4钛合金试样的激光喷丸强化和电化学充氢慢拉伸试验,研究激光喷丸对富氢环境下试样抗拉强度与氢致塑性的影响规律,探索激光喷丸诱导的高幅值残余压应力、高密度位错及细化晶粒与氢原子扩散的耦合作用对试样力学性能的影响机制。结果表明,激光喷丸诱导的高幅值残余压应力能够促使裂尖收缩闭合,减少晶格间距,有效抑制氢原子的渗透、扩散和聚集;同时,激光喷丸诱导的晶粒细化能够产生更复杂的晶界网,使材料表层致密化,切断氢或其他原子和分子的扩散路径,降低氢聚集区域的氢压,抑制氢致开裂的发生。此外,激光喷丸提高了TC4钛合金的的抗拉强度和延伸率,使材料呈现出更为明显的韧性断口特征,表明激光喷丸能够有效降低材料的氢致塑性损失。(3)以ABAQUS有限元分析软件为平台,搭建激光喷丸诱导残余压应力-氢扩散-拉伸耦合的计算模型,探究残余压应力场耦合氢扩散行为的共同作用对TC4钛合金拉伸力学性能的影响规律。模拟结果表明,激光喷丸诱导的残余压应力能够抑制氢的扩散,降低进入材料内部的氢浓度,有效提高材料的抗氢脆性能。此外,激光喷丸试样模拟所得的抗拉强度和延伸率较基体都有所提升,且激光功率密度越高,材料的抗拉强度和延伸率越高,力学性能越好。试验和模拟结果均表明激光喷丸诱导的残余压应力能够有效抑制氢原子的渗入及扩散,提高TC4钛合金的拉伸力学性能。
其他文献
惯容器代替质量元件形成了“惯容-弹簧-阻尼”(ISD,Inerter-Spring-Damper)悬架结构新体系,为被动悬架的发展开辟了一条新途径。利用具有可变参数的非线性被动元件替代线性元件成为了传统被动悬架发展的新方向。目前,非线性的阻尼及弹簧元件已被广泛研究,而非线性惯容器及其在悬架上的应用却鲜有报道,非线性惯容器悬架的结构与参数设计仍是一个难题。在此背景下,本文根据能量方法证明了忆惯容器的
多菌灵(Carbendazim,CBZ)是一种应用广泛的苯并咪唑类杀菌剂,主要用于农作物真菌疾病的防治,研究已证实其难以降解并且对生物体具有危害性。尤其,多菌灵被认为是一种可能对哺乳动物不同靶器官产生毒性的内分泌干扰物,而后者是肥胖的主要诱因之一,原因在于内分泌干扰物可打破机体的脂质代谢平衡而诱导脂肪累积。但是,关于多菌灵干扰机体脂质代谢导致肥胖的相关研究较少,其作用机制也未知。本论文以多菌灵为对
当前,绿色发展深入人心,生态保护任重道远。硫浓度较高的燃油会腐蚀运输管道和加工设备,其燃烧会产生大量的硫氧化物(SOx),这些物质还会影响公共健康和生态系统。因此,从燃油中除去硫化物是必不可少的步骤。加氢脱硫技术在工业上较为流行,它对于脂肪族硫化物脱除较易,然而对芳香族硫化物脱除效果不佳,还会造成较大的辛烷值损失。所以,开发出非加氢脱硫技术来应对加氢脱硫技术的局限性,其中氧化脱硫由于其反应条件温和
鲟鱼是最大的淡水鱼,营养丰富,浑身是“宝”。鲟鱼加工产业链中的大量下脚料譬如腹部废弃料,富含脂质和蛋白质等营养物质,尤其是n-3多不饱和脂肪酸,因此可以作为鱼油的极佳来源。然而,鱼油稳定性差,经常因为氧化变质而品质降低,此外,鱼油本身具有令人不快的腥味,这都导致其应用受限。乳液系统能够有效保护鱼油,掩盖其不良风味,这有利于扩大鱼油在功能性食品等方面的应用。本研究使用双酶法对鲟鱼鱼腩部位进行酶解提取
随着社会的不断发展,网络给我们的生活带来了很多变化,但在网络规模逐步扩大的过程中,网络中可利用的漏洞也越来越多,攻击者可能会利用这些漏洞发起攻击,会给用户带来极大的经济损失。网络流量中的漏洞攻击已经成为不可忽略的威胁,因此针对网络流量中的攻击进行研究具有重要意义。近些年,许多学者对网络流量中的漏洞攻击进行研究,也取得了一定的成效,但目前的研究还可以进一步改进,主要有两个方面:(1)对漏洞攻击进行特
海啸是一种灾难性的海浪,主要由海底地震、火山喷发、海底滑坡而产生,它具有传播距离远、能量损失小、破坏力强等特点,海啸一旦发生,将会对沿海地区的人民和财产造成巨大的损失。海啸波的首波爬高是对近岸造成破坏的主要原因,因此,了解海啸波爬高与其运动状态对近岸基础设施建设、防灾减灾至关重要。对于海啸波的实验研究与数值模拟,通常将其模型简化为孤立波,可通过研究孤立波性质来代替海啸波。为此,本文通过数值模拟的方
燃料电池汽车具有能量效率高,零排放,无污染等优点,作为新能源汽车发展的重要方向,近几年受到学者和企业的广泛研究。车用燃料电池电动空压机将压缩空气输送至电堆,在电堆内部与氢气发生电化学反应产生电能。为满足燃料电池汽车全工况宽功率范围的需求,必须采用高功率的燃料电池,这要求进一步提高电动空压机供气流量和压比。电动空压机主要由压缩机和永磁同步电机组成,压缩机结构和永磁同步电机转速影响供气流量和压比。在压
紧固孔的疲劳断裂是飞机机身结构损伤中最为常见的形式之一,因此必须对其进行强化处理,以提升该处的疲劳寿命。但诸如冷挤压、干涉配合及机械喷丸等形式的传统抗疲劳强化方式存在着表面粗糙度值较高、加工范围较小以及成本较高等问题,而绿色环保、加工表面质量高的空化水射流技术可以有效克服现有抗疲劳强化方式的缺点。因此,本文将空化水射流技术应用至紧固孔内表面的抗疲劳强化加工过程中,研究该技术中各工艺参数对紧固孔内壁
铁作为多种重要代谢过程的关键营养素,严重缺乏会造成缺铁性贫血,危害身体健康,因此在缺铁时额外摄取补铁剂十分必要。目前,肽铁螯合物被认为是缓解缺铁性贫血的最佳补充剂之一。本研究以燕麦为原料,在采用酶法制备燕麦多肽的基础上,进一步研究肽铁螯合物制备工艺,获得了一种新型燕麦多肽亚铁螯合物(OP-Fe2+),并对该螯合物进行结构表征及性质研究。在此基础上,通过建立缺铁性贫血大鼠(IDA)模型,观察OP-F
柔性电子作为一种新兴电子技术,对产品开发具有革命性意义,受到了学术界、工业界和政府的高度关注。互连导线作为柔性电子器件的基本组成部分,其可延展性是判断器件整体拉伸性能的重要指标。因此,本文基于有限元思想对导线进行优化设计及性能分析,同时创新性地采用模板印刷法制备出可拉伸互连导线,将其应用在自供能触觉传感器上。主要内容如下:(1)以成本低、导电性好的铜作为互连导线材料,柔性基底则是选用拉伸性能优异的