量子相干性度量研究

来源 :中国科学院大学(中国科学院物理研究所) | 被引量 : 0次 | 上传用户:xjqlhh0621
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
量子计算和量子信息已成为人们关注的重要研究方向,近年来,在量子保密通信、量子算法、量子模拟、量子机器学习等领域,重要成果不断涌现。量子相干不仅是量子力学中的基本概念,更是量子计算和量子信息处理过程中不可或缺的资源。在基于量子资源理论的相干度量方案提出后,关于量子相干性度量,量子相干性在开放系统中的演化与保持,量子相干性在量子多体系统、量子热力学、量子生物等领域的应用的研究不断发展,使得这一领域成为热点。另一方面,量子资源理论的度量方法本身也具有十分重要的意义。本文介绍了量子信息与量子计算中的基本概念与简单应用,以及基于量子资源理论的相干度量方案和以相对熵相干性为代表的度量函数,简单概括了量子相干性在开放系统中的演化,包括经典信道相干性的产生和破坏能力、量子相干的“冻结”等现象,举例说明量子相干在量子算法和量子多体系统等相关问题的应用。简要说明了量子资源理论度量方法的原理,并以量子操作的度量方案为例加以说明。量子信息与量子计算、量子相干、量子资源理论的相关研究仍然保持快速发展,相信未来会有更多令人瞩目的结果涌现。
其他文献
磁性化合物中自旋、轨道和晶格之间的相互作用会引起丰富的物性,如庞磁电阻和各向异性磁电阻等,相关研究是凝聚态物理和材料物理领域的前沿研究之一。如近年来,研究人员在层状反铁磁化合物Sr2Ir O4中发现了负磁电阻(MR~-70%)和极高的各向异性磁电阻(AMR~160%),在具有磁晶各向异性的层状磁性化合物Cr SBr中发现了自旋翻转所诱导的负磁电阻(MR~-40%),这与自旋-晶格之间的强相互作用和
强太赫兹(Terahertz,THz)源是THz科学技术发展的关键,其中大能量强场THz脉冲源在超快物态调控、新型电子加速器等领域具有重要的应用前景。超快超强激光与等离子体相互作用是近年来发展起来的一种新型的强场THz辐射产生途径。与基于加速器的强场THz辐射以及基于非线性晶体的THz源相比,基于激光与固体靶作用的渡越辐射THz源有着独特的优势。当一束相对论强度激光入射到固体靶表面,激光将在靶前通
超导材料在交通、能源、信息等领域有广阔的应用前景,目前铜基超导体是唯一能实现液氮温区应用的高温超导材料,但是大部分铜基超导体含有稀土元素、易挥发元素或有毒元素,其应用空间受到进一步限制。“铜系”铜基超导体Cu Ba2Can-1CunO2n+2+δ(简称Cu12(n-1)n)只含碱土金属和铜元素的氧化物,组分简单、经济安全且环境友好。当n=4时的Cu-1234超导体具有“铜系”中最高的超导转变温度T
近年来全球能源的短缺引起了人们对热电材料的关注。热电器件对于工业废热的回收再利用起着重要的作用,提高热电材料的能量转换效率就能在很大程度上节约能源的使用。通常热电材料的能量转换效率主要与其电导率、热导率和塞贝克系数三个参数相关。然而,材料中三个参数相互制约,限制了转换效率的进一步提高。要提高材料的热电性能进而提升能量转换效率,就需要减弱或消除材料中三个参数之间耦合。近来拓扑材料发现证明了电子和声子
化学式为AA?3B4O12的A位有序四重钙钛矿氧化物,因其A?位与B位均可容纳过渡金属离子,从而可产生多种新型磁电相互作用,导致系列新颖物理性质的出现。本文发挥高温高压实验条件在材料合成上不可替代的优势,制备了单相性良好的四重钙钛矿CaFe3Ti4O12及其B位掺杂体系LaFe3(Ti3Fe)O12,系统研究了材料体系晶体结构与物理性质,并探索了相关物理机制。主要的创新性研究内容如下:(一)利用高
过渡金属层状化合物由于其丰富的晶体结构种类和新奇的物理性质,一直以来都是凝聚态物理及材料化学领域研究的热点。已知的铜氧化物超导体与铁基超导体都属于过渡金属层状化合物范畴。铜氧化物超导体具有层状钙钛矿结构,由Cu O2超导层与提供载流子的库电层交替堆积而成。而铁基超导体同样具有准二维层状结构,它包含了反萤石型Fe Se/Fe As层。除此之外,过渡金属层状化合物中还包含一些潜在的热电材料,如Bi C
铁电涡旋是指在纳米结构中存在的连续的电偶极矩的旋转现象,如果考虑用这些结构来存储数据,那么理论上它们的存储密度比现在的磁盘高几个数量级。我们组的其他同学创造性地利用分辨率优于0.1nm的球差矫正TEM和自主设计的原位样品杆来研究压力下的极化涡旋的演变行为。但是,由于极化的平均长度非常短,直接观察TEM图像中的极化情况以及晶格常数都需要非常好的经验和非常多的精力。所以,用计算机定量化处理这些图像尤其
在常规条件下,从微观层面上看,由辐射场引起的物质内部的物理化学变化通常表现为原子或者分子的运动、电子的转移、能级的变动,如果在某一波段内,辐射场和物质相互作用的现象十分显著,那么这些过程都可以通过吸收光谱或者发射光谱体现出来。在研究超快时间尺度的动态过程时,瞬态吸收光谱可以用泵浦探测技术测得,但往往同时伴随着激发态吸收、受激辐射、基态漂白等许多实验者难以控制的信号,光谱成分较多,信号杂乱,为分析真
二维半导体由于独特的二维晶体结构以及突出的物理性质,在新一代高性能电子器件中具有重要应用潜力,吸引了大量研究兴趣。等价掺杂在此类材料中应用广泛,该方法可以对材料的晶体结构和电子结构进行调节,从而实现对材料输运性质、磁学性质等物性的调控。本论文主要对几种过渡金属基二维半导体进行等价掺杂,并表征了等价掺杂对其结构和物性的调控作用,得到的主要研究结果如下:首先采用化学气相输运法与固相合成法制备了Hf(S
以钙钛矿氧化物为代表的巨磁电阻材料,由于其庞磁电阻效应(CMR)和其丰富的物理现象如Jahn-Teller畸变,电荷轨道有序,相分离,各向异性,金属绝缘体转变,老化,记忆效应等,而且磁电阻效应还有望用于高密度磁性存储和磁敏传感器上,因此受到人们的普遍关注。这些物理现象的起源必和该材料的微观特性有关,这些微观机制的阐明,必将对凝聚态物理的发展和完善起到巨大的推动作用。本论文主要研究了单层和双层钙钛矿