论文部分内容阅读
随着纳米医学的飞速发展,将纳米医学应用于肿瘤的诊断与治疗是肿瘤研究的重要发展方向。同时集成肿瘤诊断与治疗于同一纳米器件上得到多功能的纳米诊疗平台,在精准医疗和临床应用上展现出了巨大潜力。光热治疗(photothermal therapy,PTT)是利用具有较高光热转换效率的材料,将其注射入体内,利用靶向性识别技术聚集在肿瘤组织附近,并在外部光源的照射下将光能转化为热能导致细胞消融并死亡的一种治疗方法。具有光热性能的纳米材料由于其优异的光热转换能力在癌症的光热治疗中逐渐被广泛应用。钨基复合纳米材料由于其独特的光学性质,优异的活体成像能力,在肿瘤的多模式成像与光热治疗中展现出巨大的应用潜能。本文针对光热治疗光穿透深度低、治疗效率低及纳米材料合成复杂的问题,构建了三种不同的钨基复合纳米材料,并探究了他们在肿瘤多模式成像与光热治疗中的应用,主要内容包括以下三个部分:1.新型氧化碲/铵钨青铜复合纳米材料用于第二近红外区深层次的光热治疗:利用水热法合成了一种新型的氧化碲/铵钨青铜(TeO2/(NH4)xWO3)纳米条带(TONW NRs)。由于NH4+的掺杂,自由电子被注入到WO3的最低未占据分子轨道带,加上Te原子的孤对电子与W6+离子之间的电子跃迁,导致自由电子增强的局部表面等离子体共振,最终实现了 TONW NRs优异的近红外吸收。聚乙二醇功能化的TONW NRs(PEG-TONW NRs)具有良好的稳定性和生物相容性,显示出高达43.6%的光热转换效率(PTCE),超过许多以前在NIR Ⅱ区(NIR Ⅱ,1000-1350nm)应用的纳米光热试剂。实验证明,PEG-TONW NRs在体外和在体内均具有显著的肿瘤消融能力。同时,PEG-TONW NRs还具有先进X射线计算机断层扫描(CT)和光声(PA)成像能力。鉴于PEG-TONWNR在NIR Ⅱ区具有优异的光热效应,良好的生物相容性以及较好的CT/PA成像诊断能力,该材料解决了 PTT治疗深度低的问题,在深层次PTT以及诊疗一体化中具有广阔的应用前景。2.具有双重靶向能力的硒硫化钨/二氧化锰-异烟肼-三苯基溴化膦@癌细胞膜用于CT/(magnetic resonance)MR双模式成像引导的自由基/光热协同治疗:合成了一种新型WSSe/MnO2异质纳米片,并负载药物异烟肼(INH),而后连接线粒体靶向基团三苯基溴化膦(TPP)并用癌细胞膜进行包裹,最终得到WSSe/MnO2-INH-TPP@CM复合纳米材料。由于癌细胞膜的同源靶向性以及TPP对于线粒体的靶向能力,WSSe/MnO2-INH-TPP@CM高效进入肿瘤细胞,并在线粒体处累积。在近红外光的照射下,WSSe/MnO2纳米片表现出良好的光热转换性能。由于肿瘤微环境的弱酸性,MnO2外层逐渐发生降解产生Mn2+离子,而Mn2+离子可以催化异烟肼(INH)产生具有高反应活性的氧化羟基自由基(·OH),从而引起线粒体损伤以及细胞凋亡。另外,激光照射下材料引起的升温同时可以加速催化反应的发生,达到协同治疗的效果。该纳米复合材料同时具有体内CT成像和MR成像能力。实验结果表明,WSSe/MnO2-INH-TPP@CM的线粒体靶向氧化损伤和光热疗法结合在体内和体外均具有出色的抗癌治疗效果,最终实现了 CT/MR双模式成像引导的·OH/PTT协同治疗,解决了光热试剂靶向性差以及单一 PTT治疗效果差的重大问题。这是将非芬顿类型·OH形成与PTT联合用于抗癌治疗的首次探索,为联合癌症治疗策略提供了新的机遇。3.可降解的FeWOx纳米颗粒用于CT/MR双模式成像引导的光热/光动力学/化学动力学协同治疗:合成了一种在肿瘤微环境下可降解的FeWOx磁性纳米颗粒,并用RGD-PEG进行修饰,得到具有肿瘤靶向性的FeWOx-PEG-RGD复合纳米颗粒。由于FeWOx纳米颗粒具有较高的饱和磁化强度,因此可以用作磁靶向试剂以及T2加权MR成像造影剂。在980 nm的近红外激光照射下,FeWOx纳米颗粒不仅展现出良好的光热转换性能,而且可以有效地产生单线态氧,实现近红外光照射下PTT/PDT的联合治疗。在高过氧化氢(H2O2)表达的酸性肿瘤微环境中,FeWOx-PEG-RGD逐渐降解并释放Fe3+和Fe2+,触发Fenton反应生成·OH,实现化学东力学治疗(CDT)。同时,释放的Fe2+导致T2/T1信号转换实现了癌症治疗的可视化。W的高X射线衰减系数也使该材料成为用于引导治疗的良好CT造影剂。因此,结构简单的FeWOx-PEG-RGD能够介导(T2/T1加权)MR/CT双模式成像指导的PTT/PDT/CDT协同治疗,具有高特异性以及高抗癌效率。这种简单,可降解且多功能的FeWOx-PEG-RGD纳米颗粒提供了一个新颖且有前途的纳米治疗平台。