汽车传动轴中间支承的设计与试验研究

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:yttgfnm
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
消费者对汽车整体性能的认知和要求越来越高,不仅表现在对动力、制动、加速等性能的要求,还表现在对汽车噪声、振动与声振粗糙度(NVH)性能的要求,并成为当下汽车购买者的重要考量之一。因此,解决好汽车NVH问题是提供汽车产品质量的重要表现。传动轴作为汽车动力传递的主要部件,在汽车行驶过程中担负着将发动机-变速箱输出的动力传递至后桥驱动轮的任务。但是由于传动轴结构本身的力学特性,并且工作在高转速工况下,不可避免的会出现振动现象,从而影响整车的NVH性能和乘坐舒适性。本文针对某一款车型传动轴中间支承与传动系的振动特性进行研究,论文的主要工作如下:(1)分析了十字轴万向节的力学特性,推导出中间支承在传动轴中的受力情况,通过改变中间支承刚度来避开与传动轴振动产生的共振频率;利用有限元法计算传动轴自由模态频率,并换算成对应的临界转速,求解出了中间支承刚度K的取值范围。(2)运用动力学仿真软件Adams建立传动轴系总成动力学模型,仿真对比分析单双层隔振中间支承对传动轴振动的影响。以中间支承刚度为设计变量,以中间支承座的振动加速度均方根RMS最小值为目标函数,对传动轴动力学模型进行仿真优化。研究中间支承刚度值变化对传动轴振动的影响,并得出最优中间支承弹性刚度值。(3)设计中间支承结构,然后通过有限元分析软件Hypermesh的前处理模块对中间支承橡胶部件划分网格,并利用ABAQUS对网格模型建立完整的有限元模型,进行有限元仿真计算与分析;最后对中间支承样件进行静态特性实验测试,并与仿真得到的静刚度结果对比。(4)通过整车振动测试,提取中间支承处和后桥壳处的振动信号,并加以处理分析,对比传动轴中间支承刚度优化前后对整车振动的影响,并以驾驶座椅导轨的振动加速度均方根值作为整车的振动评价指标,评价试验车的振动性能。
其他文献
过硫酸盐(PS)活化高级氧化技术(AOP)氧化分解废水中氯代芳烃具有高效优势。其中铁基活化材料的PS活化能力强,且环境友好,但其有效活化成分Fe2+活化后形成的Fe3+难以活化PS,导致PS难以持续高效活化,成为Fe2+(或Fe3+)-PS活化体系高效去除污染物的瓶颈。通过助催化剂实现Fe2+/Fe3+循环为Fe2+(或Fe3+)-PS体系的高效活化提供了新的途径。本论文以二硫化钼(MoS2)助催
ADAMTS13(A disintegrin and metalloproteinase with a thrombospondin type 1 motif,member 13)通过特异性酶切VWF多聚体调控血小板富含型血栓的形成。野生型(WT)ADAMTS13 C端TSP8-Linker-CUB1(TLC)结构域能与N端Spacer结构域相互作用,使之呈闭合构象。该自抑制构象既能防止ADAMT
研究背景近年来,干细胞领域飞速发展,间充质干细胞(Mesenchymal stem cells,MSCs)移植治疗心肌梗死具有广阔前景。但是MSC移植在心肌梗死(Myocardial infarction,MI)治疗中的心脏归巢率和存活率较低。我们课题组前期研究表明,阿托伐他汀可有效改善心梗周边区微环境,提高骨髓源性间充质干细胞(bone mesenchymal stem cells,BMSC)存
磁制冷技术因具有效率高、绿色环保等突出优势,被认为是目前最有潜力取代气体压缩制冷的绿色制冷技术。近年来,备受人们关注的近室温磁制冷材料主要有5:4型Gd-Si-Ge基化合物,Fe2P型Mn基化合物和Na Zn13型La-Fe-Si基化合物等,La-Fe-Si基化合物因具有大磁热效应、价格低廉以及不具有毒害性等独特优点,在室温磁制冷领域具有广泛的应用潜力。典型的La-Fe-Si基化合物如LaFe13
目的:晚期糖基化终产物(AGE)的累积是糖尿病并发症发生发展的重要因素。AGE增多可导致心肌细胞的离子通道表达和功能发生改变,而离子通道蛋白功能异常是心律失常发生的分子基础。我们前期研究发现,糖尿病心室肌细胞中Cav1.2及Kv4.3的表达下调。另外,糖尿病时Wnt/β-catenin及AKT/m TOR通路活性发生改变,且可能与心律失常相关,但其机制不明。本文拟探讨AGE是否通过调节Wnt/β-
【目的】研究组蛋白甲基化酶SETDB1(SET domain bifurcated histone lysine methyltransferase 1,SETDB1)在肺动脉高压疾病模型中的表达情况,探讨低氧诱导因子-2(Hypoxia inducible factor-2,HIF-2)对SETDB1及组蛋白H3的第9赖氨酸残基三甲基化修饰(Tri-Methyl-Histone H3(Lys9)
穿刺机器人已广泛应用于神经外科、骨科等临床领域,但其应用于呼吸运动下的靶区穿刺手术仍面临较大挑战。胸腹部靶区受呼吸运动影响,其位置实时变化,若直接根据术前影像数据按规划路径穿刺,不仅穿刺精度低,而且针具与周围组织间的牵拉会导致针具弯曲形变以及组织损伤。所以如何克服呼吸运动的影响,提高靶区定位精度,是机器人有效应用于胸腹部穿刺的研究重点。目前穿刺机器人主要应用于刚性靶区穿刺,其将术前医学影像空间下与
随着第五代移动通信技术的快速发展,以及新时代背景下万物智能互连技术的不断迭代,通信系统对信道容量和数据传输速度的要求与日俱增。在这样的需求和背景下,MIMO(Multiple-Input Multiple-Output,多输入多输出)技术在通信信道传输方面扮演着越来越重要的角色。MIMO技术能够大幅提高数据传输速率和信道容量,而不增加发射功率和频率带宽,从而很好地应用到复杂的多径环境中。MIMO天
背景最近的研究表明,裂解及聚腺苷化特异性因子3(cleavage and polyadenylationspecific factor 3,CPSF3)在急性淋巴细胞白血病和尤文氏肉瘤中被证明是一个很有前景的抗肿瘤治疗靶点,但其在肝细胞癌(hepatocellular carcinoma,HCC)中的潜在作用尚未见报道。方法利用生物信息学方法分析TCGA数据库中CPSF3在肝细胞癌组织和正常组织中
自从中本聪提出了“去中心化”的比特币以来,区块链技术得到越来越多的关注。作为区块链的核心技术,拜占庭共识算法保证了在存在恶意节点的情况下,区块链能够安全地运行。基于主节点的拜占庭共识算法通过主节点广播客户端请求的方式来进行共识。这种方式能够拥有较高的共识效率,但这类拜占庭共识算法的主节点需要承担更多的计算量以及网络通讯量,因此主节点和从节点之间会存在负载不均衡的现象。由于负载不均衡,主节点崩溃而导