【摘 要】
:
对于医学图像分割任务来说,传统的手工方法依托于医生的经验知识,不仅耗时耗力而且分割精度也没有保证。而随着计算机技术的发展,依托于深度学习的自动化分割方法在各个领域显示出了自己独特的优势,于是有了将深度学习与医学图像相结合来实现自动化医学图像分割的技术。在此背景之下,本文以深度学习为工具探索生成式对抗网络在脑肿瘤分割中的应用,主要工作如下:(1)从多尺度特征的角度出发实现了一个基于并行多尺度的生成对
论文部分内容阅读
对于医学图像分割任务来说,传统的手工方法依托于医生的经验知识,不仅耗时耗力而且分割精度也没有保证。而随着计算机技术的发展,依托于深度学习的自动化分割方法在各个领域显示出了自己独特的优势,于是有了将深度学习与医学图像相结合来实现自动化医学图像分割的技术。在此背景之下,本文以深度学习为工具探索生成式对抗网络在脑肿瘤分割中的应用,主要工作如下:(1)从多尺度特征的角度出发实现了一个基于并行多尺度的生成对抗网络模型,该网络是一种带有注意力机制并且包含多个残差块的多尺度并行结构,能够缓解在网络深度不断加深的过程中出现的梯度弥散与网络失效问题,允许网络同时提取输入数据不同侧重点的特征信息,通过多尺度推理融合来利用这些特征信息,从而帮助网络模型提升对细节信息的敏感度,提高对于脑肿瘤不同区域的分割精度。(2)在研究如何提升生成式对抗网络对小目标分割精度的过程中实现了细粒度提取模块(FEM),该模块在一定程度上减少了网络编码过程中不必要的语义信息丢失,能够深层次地提取到更多的细粒度信息用于加强局部信息与全局信息的几何约束,这些特点使得在深度神经网络中可以有更多精细化特征来描述目标区域,进而提高网络模型在相关任务中的分割表现。(3)从分阶段处理的角度出发实现了一种新颖的二阶段生成式对抗网络To Sta GAN,旨在解决在网络模型中信息丢失的问题,并将其应用于脑肿瘤图像分割领域。该网络模型在分割的过程中构建了一个从粗到细的过程,整个过程分为两个阶段,第一阶段的网络接收输入数据并输出粗分割结果,第二阶段的网络在细粒度提取模块(FEM)所提取的深层语义信息的帮助下,进一步对粗分割结果进行优化,在生成器与鉴别器互相对抗的过程中完成从粗到细的分割过程。
其他文献
深度学习技术的飞速发展,催生出了一系列诸如计算机视觉,自然语言处理,强化学习之类的实际应用场景及方向,同时在安防监控领域也借助深度学习的发展迎来了技术手段上的变革。但是当前应用于安防监控领域的深度学习算法大多只停留在实验室阶段,虽然针对常用的数据集,当前的算法都能取得一个较好的精度,但在真实场景下,算法的精度和实时性能都不能达到实际应用的要求,所以急需一套智能化人体行为检测系统去解决当前真实场景下
字符识别是受到学术界和工业界重视的技术,需要根据针对性的场景设定和模型设计来解决相关实际问题。芯片字符识别作为字符识别的一种特殊场景,可以解决工业缺陷检测、自动化配装芯片等广泛性的工业问题。早期芯片字符识别方法,例如模板匹配等,只能在固定字体和固定场景发挥效果,但近年来随着深度学习算法的扩展和显卡浮点性能的增加,深度学习模型能够识别更多相似字体和更多场景的芯片,但深度学习模型的高精度基本建立在大量
移动边缘计算(Mobile Edge Computation,MEC)通过将计算资源部署到网络边缘,在地理上缩短了与用户的距离,可以就近处理用户的请求,避免了漫长的网络传输,从而提高服务的响应速度。由于边缘节点部署在网络边缘,单个节点的覆盖范围相对有限,因此用户的移动就有可能导致用户离开当前节点的覆盖范围而进入另外一个节点的覆盖范围。当用户从一个节点的覆盖范围进入另外一个节点的覆盖范围时,为了保证
本文以舰船、飞机等大型复杂装备电磁干扰现场检测为背景,把现场检测中的电磁干扰信号分类识别作为研究课题。针对大型装备面临的电磁干扰现场检测与故障模块查找问题,设计了一套EMI信号分类识别系统,构建大型装备电磁干扰现场检测案例库,进行EMI信号采集与特征分析、故障模块定位。首先,介绍了该系统应用场景、技术指标和软硬件构成,对系统中涉及的虚拟暗室、特征提取、模板匹配等相关技术进行了分析。其次,针对系统中
基于参量阵原理的屏幕定向扬声器是一种能够同时呈现画面和产生高度指向性可听声的新型屏幕扬声器,它利用超声波在介质中自解调产生定向可听声。由于介质的自解调过程是非线性的,受温度、湿度、信号处理算法和屏幕定向扬声器本身特性等多种因素的影响,导致屏幕定向扬声器解调出的可听声存在失真,对设备的音质有较大影响,因此本论文主要围绕屏幕定向扬声器的谐波失真进行研究,为便携式设备的屏幕定向扬声器实现高保真音质提供一
随着人机对话技术的不断发展,各种各样的智能对话系统层出不穷,如:领域问答系统、闲聊机器人、终端导航机器人等智能产品,很大程度上方便了人们的日常生活。在各种类型的对话系统中,任务型对话系统是一个重要分支,主要通过多轮交互解决用户在某个领域遇到的问题,提高业务办理效率,减少人工参与。本文针对金融领域任务型对话系统的用户意图识别进行研究,包含领域分词优化、对话意图识别以及融合意图识别的智能对话系统的设计
矩阵积和式是一种常用的矩阵不变量,在组合计数、统计检验、无线通讯、统计物理、分子化学等领域有重要的应用。积和式的定义与行列式相似,但是它的计算复杂性远远高于行列式。英国理论计算机科学家Valiant在1979年证明积和式计算是组合计数中的#P完全问题,即其难度不低于组合优化中的NP完全问题。迄今为止,对一般矩阵最为有效的积和式精确算法是Ryser基于容斥原理所建立,其计算复杂性为O(n2n-1)。
随着互联网时代的到来与发展,为大数据、云计算、人工智能等新兴技术提供了肥沃的土壤,同时也为各行各业带来了新的变革与推动。教育作为民族振兴、社会进步的基石,一直是我国优先、重点发展的行业。长期以来,我国教育面临的突出矛盾是人们对高质量个性化教育服务的迫切需求与优质教育资源供给的严重不足,针对教育资源供给侧的创新和个性化教育服务新模式的探索是当前教育改革与发展所面临的重大课题。本文搭建支持矩阵自动推理
语义匹配技术备受关注,成为了当前自然语言处理技术应用领域热点话题之一,在问答系统以及信息检索等领域拥有着广泛的应用场景。目前,最热门的语义匹配模型为基于BERT的微调模型,但是大多数基于BERT模型的语义匹配技术由于采用统一注意力机制,对于句式复杂的文本语义信息抽取不够充分,导致对句子语义的理解存在偏差;同时,BERT模型规模庞大,计算量着实惊人,仅仅单个样本计算一次的开销动辄上百毫秒,在严格的延
随着科技水平的进步,视频数据在人们的日常生活中占据着越来越重要的地位。视频中存在着大量的文字信息,对其进行提取有助于视频内容的审核以及视频内容归纳分类。而视频文字检测识别技术能很好的满足对于大量视频内容提取与审核等方面的需求。相比于人工,借助视频文字检测识别技术进行视频内容提取与审核等工作,能够大幅提高效率并降低人力成本。本文基于深度学习技术,对视频文字检测算法和视频文字识别算法进行了研究,设计实