【摘 要】
:
油田智能化是未来石油行业发展的趋势,人工智能技术的进步为各行各业的产业升级带来了新希望。油气集输系统是整个石油地面工程的核心部分,传统的油气集输系统控制依赖于人工PID参数整定和精细化管理,生产流程需要人工检测数据以及手动调整控制参数,操作难度大、存在安全隐患且不具备普适性,同时在油气输送过程中易造成较高能耗、低资源利用率,使得生产成本的陡然上升。因此,本文针对以上问题,提出一种基于强化学习的油气
论文部分内容阅读
油田智能化是未来石油行业发展的趋势,人工智能技术的进步为各行各业的产业升级带来了新希望。油气集输系统是整个石油地面工程的核心部分,传统的油气集输系统控制依赖于人工PID参数整定和精细化管理,生产流程需要人工检测数据以及手动调整控制参数,操作难度大、存在安全隐患且不具备普适性,同时在油气输送过程中易造成较高能耗、低资源利用率,使得生产成本的陡然上升。因此,本文针对以上问题,提出一种基于强化学习的油气集输管网运行综合控制方法,该方法能够使得系统控制水平智能化,不需要人工专家分析,系统能够根据实时运行环境自动调整控制动作且能够保证系统正常运行。主要工作如下:1)提出一种基于强化学习的油气集输管网运行综合控制方法。详细定义了控制环境、控制动作、奖励函数和更新机制等关键环节,构建了完整的智能控制方法。该方法能够在线进行控制状态评价和控制动作决策,使得系统在不违反约束条件的情况下正常运行。根据实验,随着训练的进行,该方法能够指导系统保持低能耗状态的同时正常运行。2)提出引入安全机制的集输系统智能控制模型。为提高本控制系统的普适迁移能力和更高的控制要求,本文在深度强化学习框架下,在网络结构层面提出了“安全层”设计,并提出了安全机制的智能控制方法。该方法可以杜绝系统在油气集输过程中出现析蜡、回流问题隐患,进一步保证系统安全运行。3)搭建了可视化控制动作模拟环境和油气集输管网综合优化控制方法的仿真系统,该系统可以直观表现出控制动作的实时运行状态,可以通过温度、压力曲线实时观察当前控制动作及系统运行状态。
其他文献
随着社会经济的迅速发展,石油能源的需求越来越大,开采量逐渐上升,但是安全问题制约了油田开发力度。现阶段的违规行为识别主要依靠人工巡检,工作强度大且效率不高。同时,油田各井场的摄像头数量多、高度较高、距离较远,因此,目标的尺寸较小,检测难度大,检测结果不稳定。为了实现油田视频监控的智能化,本文进行了以下研究:(1)提出了基于设备检测的油田施工场景识别方法。使用K-means算法对设备尺寸进行聚类分析
随着传感器技术和机械制图的发展,三维模型数量呈爆炸式增长。在计算机视觉领域,研究人员将目光从平面上的图像应用转移到表征真实世界的三维模型的应用。三维形状分割是三维形状分析的基础,是计算机视觉中检测和识别物体信息的基础。对三维模型进行形状分割,确定模型中每个网格包含的语义,通过对每个语义成分更深入的分析,可以实现形状对应与匹配、模型检索等任务。对于网格的三维形状分割,早期学者从计算几何角度出发,通过
安全生产一直是石油生产及化工领域的关注话题,海洋油气开采更是如此。对于深水油气田开发,所处的为高压、强腐蚀性及复杂的海底环境,并且水下生产系统复杂,零部件众多,一旦出现故障,可能造成原油的泄露,影响安全正常生产,造成海洋污染和严重的经济损失。深海油气田开发水下生产系统的安全运行得益于水下控制系统可靠性水平的不断提高,水下控制系统作为水下油气系统的关键设施,较陆地控制系统更难控制与维护,因此对其可靠
现实生活中存在许多复杂的数据,例如:社交网络中的用户交互、产品购买和有机蛋白质之间的交互等等。可将其描述成一个由相互作用的边连接的节点构成的网络,即复杂网络。社区发现是复杂网络分析的重要技术之一,其目的是发现网络中具有内部高内聚性,但与网络的其余部分相对隔离的一组节点。可见,社区发现有助于了解构成复杂网络的性质、动态行为,从而提高网络数据的可视化水平。近年来,随着各种网络的规模急剧增长,检测大型网
近三年来,深度学习(DL)在多聚焦图像融合领域的理论研究是一个热点课题。多聚焦图像融合的目的是将部分聚焦的图像整合到一个全聚焦的单个图像中,为了达到这个目的,本文针对基于深度学习的多聚焦彩色图像融合方法展开研究,主要研究成果如下:(1)基于DCNN和QUADTREE的多聚焦图像融合算法此项工作中主要解决DCNN算法中没有对未知区域处理的问题。首先利用DCNN算法得到粗糙的聚焦概率图,通过设定两个自
近年来,为更好地满足油气生产需求,各种新技术被陆续引入到水下生产系统中。水下生产系统的工程建设和应急维护需要综合考虑环境、经济、安全等相关因素,很多操作都不被允许实施。因此,本文结合虚拟现实仿真技术、半实物仿真技术与监控技术,对水下生产虚拟现实仿真操作监控系统进行设计与实现,该系统可为无经验的操作人员和管理人员提供丰富的水下施工经验,降低作业风险。本文首先对操作监控系统进行了详细的分析,结合工程建
调制识别是介于信号检测和解调之间的一种非协作通信识别技术,其主要任务是实现对已调信号的智能接收、处理和分类。数字信号识别的准确性关系到国计民生的多个方面,在民用领域调制识别可以实现无线电频谱管理和智能化控制,在军事领域可以实现对敌方情报的监测并保护国家信息安全,经过多年的研究已经获得了许多成果。随着调制方式和信道环境复杂度的提升,如何在低信噪比下精准识别各种调制方式成为一个重要问题。因此,面对未来
物体三维重建已经广泛应用于自动驾驶、3D打印、虚拟仿真以及VR游戏等多种场景,涉及了生物学、神经科学、生态学和农业等多个领域。随着深度学习的发展应用以及大规模三维物体重建数据集的建立,利用深度神经网络从单幅图像中恢复物体三维形状引起了越来越多的关注。现有的深度学习方法通过采用不同的几何表示和不同的深度神经网络框架进行单视图物体三维重建已经获得了不同程度的成功,然而这些工作在重建精度和不同类别物体重
页岩气的勘探开采在近年来成为全球热点。我国也在加快页岩气的开发,这不仅有利于我国向能源清洁转型,也是天然气工业的必然选择。在页岩气藏开发之前,做好产能预测有重要意义。常规的产能预测方法对数据特征的提取不充分,而深度神经网络能够充分学习到数据的特征,使得预测出的产能有较高的可信度。因此可以将深度神经网络应用于页岩气产能预测中,作为产能预测方法的补充。本文基于页岩气藏数值模拟软件生成的大量数据,利用C
逆变器作为一种实现电能转换的核心装置,在各种领域中均占有重要地位。随着微电子技术与现代控制技术的发展,全数字化和智能化是目前逆变器的发展方向。合理的PWM脉冲控制方法和波形数字控制策略的选择与设计能直接影响逆变器系统的总体性能。本文以三相三线逆变器作为研究对象,为实现逆变器的全数字化控制,论文主要做了以下工作:首先,对当前现有的PWM控制技术中对比分析,选择SVPWM控制技术作为三相逆变器的脉冲控