基于扩张思想的局部社区发现方法研究

来源 :中国石油大学(北京) | 被引量 : 0次 | 上传用户:shijiatiedaoxueyuan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
现实生活中存在许多复杂的数据,例如:社交网络中的用户交互、产品购买和有机蛋白质之间的交互等等。可将其描述成一个由相互作用的边连接的节点构成的网络,即复杂网络。社区发现是复杂网络分析的重要技术之一,其目的是发现网络中具有内部高内聚性,但与网络的其余部分相对隔离的一组节点。可见,社区发现有助于了解构成复杂网络的性质、动态行为,从而提高网络数据的可视化水平。近年来,随着各种网络的规模急剧增长,检测大型网络的代价昂贵,且难度较大。此外,对于大型网络,社区发现方法的稳定性有待提高。因此,本文提出基于扩张思想的局部社区发现方法,利用网络中的局部信息预测社区结构。本文的主要内容如下:(1)针对大型网络的局部社区发现问题,提出一种基于限制性随机游走的局部谱近似算法(LRW-LSA),通过快速的限制性随机游走获得较小范围的子图以缩减计算量。此外,采用快速聚类融合方法,进一步提高子图对恢复社区的覆盖率。最后,通过局部Lanczos谱近似方法恢复出局部社区。LRW-LSA算法探索过程从少量种子节点开始,从而识别本地社区的所有潜在的社区成员。通过在真实数据的实验,验证本算法的有效性。(2)针对现有社区发现算法的稳定性问题,结合集成学习算法,提出集成基于限制性随机游走的局部谱近似算法(LRW-LSA-EL)。首先通过实验策略设计最优的种子集比例,而后引入节点影响力优化种子集。接着,利用Bagging算法进行随机抽样并结合LRW算法构建多个具有一定差异性的基学习器,并采用投票策略获得强学习器。最后,通过Lanczos方法恢复出待检测的局部社区。实验结果表明,在不同真实网络数据集上,与LRW-LSA算法相比,LRW-LSA-EL具有更强的稳定性和准确性。
其他文献
导钻是油田勘探开发中成本最高、技术最密集的环节。现有的导钻方法主要为井下半闭环随钻导向作业。它包括地面分析决策和井下数据采集,通过实时数据双向传输、地面和井下作业相互配合来执行导钻动作从而控制井眼轨迹。然而这种方式对信号传输速度和传输效率依赖性较高,且井下环境复杂,在距离地面较远的深井、超深井,几乎难以实现有效的数据传输。另外,地面的分析决策环节涉及复杂人类专家分析和精细管理工作,人工成本较高。因
目标跟踪是在视频初始帧中选定目标的前提下,在后续帧中检测到相同目标的任务。近些年来,使用深度学习的目标跟踪方法取得了较好的效果。但高维的深度特征及频繁的卷积和池化运算造成了跟踪延时,跟踪过程中目标的外观变化和完全遮挡发生模型漂移。为了解决上述问题,本文基于相关滤波跟踪算法,对深度特征进行优化;并利用上下文信息和时间信息改进上下文感知相关滤波模型,来提高目标跟踪的精准度。本文的主要研究内容如下:(1
近年来,随着机器人技术发展迅速,其中的一个分支,移动机器人的导航和避障问题同样备受关注,也有了长足的进展。分析和研究移动机器人定位和路径规划算法能够提升导航和避障的精度,有着重要的理论意义和应用价值。本文首先整理介绍了国内外学者关于定位算法,路径规划算法的研究现状;然后分析比较多种定位,地图构建,路径规划算法并确定了本文的导航避障系统方案;接着针对RBPF-SLAM算法重采样阶段粒子退化严重,多样
基因表达式编程(Gene Expression Programming-GEP)是处理符号回归(Symbolic Regression-SR)问题最常用的算法。然而它是一种没有方向和记忆的随机搜索算法。它在搜索过程中,种群个体结构很容易趋于相同,从而丧失搜索功能,并且很易于陷入局部最优。为了克服这些缺点,本文提出一种基于空间划分思想,采用上置信界方法(Upper Confidence Bound
目前,视觉复杂问答系统已经能够在CLEVR数据集上对视觉问答系统所不能回答的复杂问题进行解答。但是,目前的视觉复杂问答系统存在一些缺陷,其中主要包括,由强监督学习引起的模型过拟合、标注成本过高以及泛化能力差的问题;由模型结构缺陷引起的系统难以处理长问题的问题;由贪婪算法引起的系统陷入局部最优解的问题。针对视觉复杂问答系统存在的上述问题,本文首先分析讨论了上述问题出现的原因。随后,针对这些问题提出了
训练样本类别不均衡容易导致分类模型过度偏好,降低少数类样本识别精度。该问题的解决方法包括数据层面的过采样方法、欠采样方法及算法层面的集成学习。现有的过采样算法生成的样本具有局限性,并且忽视了类内不均衡问题,为此本文提出一种基于高斯混合模型和JS散度的过采样算法(GJ-RSMOTE)。该算法使用高斯混合模型对少数类样本聚类,并在超球体内生成新样本,最后利用JS散度控制采样数量。通过在UCI数据集和地
石油和天然气的开采需要各种昂贵的材料和复杂的设备,这些设备和生产设施均需要进行定期维护,以保证油气开采效率,降低不必要的维修和生产成本。这些维护任务包括安全保障任务、环境保护任务、生产设施常规维护管理任务,以及一些预防性、预见性的设备维修任务。目前,还没有专业的调度软件实现维修任务的人员调度和路径规划决策,仍然采用人工手动排定的方法进行任务的分配和路径的规划,调度决策存在着效率低下、人员利用率低等
随着社会经济的迅速发展,石油能源的需求越来越大,开采量逐渐上升,但是安全问题制约了油田开发力度。现阶段的违规行为识别主要依靠人工巡检,工作强度大且效率不高。同时,油田各井场的摄像头数量多、高度较高、距离较远,因此,目标的尺寸较小,检测难度大,检测结果不稳定。为了实现油田视频监控的智能化,本文进行了以下研究:(1)提出了基于设备检测的油田施工场景识别方法。使用K-means算法对设备尺寸进行聚类分析
随着传感器技术和机械制图的发展,三维模型数量呈爆炸式增长。在计算机视觉领域,研究人员将目光从平面上的图像应用转移到表征真实世界的三维模型的应用。三维形状分割是三维形状分析的基础,是计算机视觉中检测和识别物体信息的基础。对三维模型进行形状分割,确定模型中每个网格包含的语义,通过对每个语义成分更深入的分析,可以实现形状对应与匹配、模型检索等任务。对于网格的三维形状分割,早期学者从计算几何角度出发,通过
安全生产一直是石油生产及化工领域的关注话题,海洋油气开采更是如此。对于深水油气田开发,所处的为高压、强腐蚀性及复杂的海底环境,并且水下生产系统复杂,零部件众多,一旦出现故障,可能造成原油的泄露,影响安全正常生产,造成海洋污染和严重的经济损失。深海油气田开发水下生产系统的安全运行得益于水下控制系统可靠性水平的不断提高,水下控制系统作为水下油气系统的关键设施,较陆地控制系统更难控制与维护,因此对其可靠