【摘 要】
:
随着5G网络以及移动端设备的逐渐普及,人们对于移动数据流量的需求不断増加。对于网络运营商而言,提供不受阻碍、无处不在的高质量服务意义重大。如何建立准确的长周期预测基站小区网络流量的模型,以指导运营商扩容基站小区无线设备将是一个挑战。然而,基站小区网络流量的突发性和不确定性,所以基站小区网络流量具有非线性和非平稳性特点,这对于网络流量的长期预测是一个难题。同时基站小区流量预测也表现出一定的灵活性,以
论文部分内容阅读
随着5G网络以及移动端设备的逐渐普及,人们对于移动数据流量的需求不断増加。对于网络运营商而言,提供不受阻碍、无处不在的高质量服务意义重大。如何建立准确的长周期预测基站小区网络流量的模型,以指导运营商扩容基站小区无线设备将是一个挑战。然而,基站小区网络流量的突发性和不确定性,所以基站小区网络流量具有非线性和非平稳性特点,这对于网络流量的长期预测是一个难题。同时基站小区流量预测也表现出一定的灵活性,以往基站小区流量基于单个流量序列进行预测,而基站小区网络流量中,每个小区对应一个网络流量序列,因此基站小区网络流量是由较多个流量序列组成。本文主要工作如下:1、对网络流量预测主要方法进行了综述,并分析其中的优势与不足,介绍了网络流量的特性和相关理论知识,对于单个流量序列预测提出了基于Prophet模型对基站小区网络流量进行长期预测的方法,同时,采用了经验模态分解(Empirical Mode Decomposition,EMD)以及集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)对基站网络流量进行分解,然后再利用Prophet模型对分解后的模型做预测,以此解决非平稳性对网络流量预测的影响并提高模型预测性能。2、为了适应基站多小区网络流量联合预测,提出基于DeepAR的深度学习模型对基站小区流量进行预测,该模型能够学习不同小区所表现的特征并更新神经网络参数。并在此基础上提出基于局部滑动平均(Local moving Average,LMA)的人工特征计算方法。基于先验知识,人工选取特征用于该模型。相比于传统统计模型Prophet和EMD以及EEMD结合Prophet模型,该模型大大提高了整体基站小区长期预测精度。3、本文研究使用 Prophet 以及 EMD/EEMD-Prophet 和 DeepAR分别作为传统统计模型和深度学习模型。前者具有可解释性强、易于建模的特点,在单个小区流量序列预测中能够快速分析和预测。后者在多个小区联合预测具有一定优势。基于上述模型设计与实现了基站小区流量预测系统。通过Flask Web技术开发设计本系统,该系统提供给基站的网络运维人员使用,系统主要功能包含数据处理、流量预测、历史记录查询等。
其他文献
随着互联网和多媒体技术的快速发展,数字音像制品以及其他电子出版物的传播和交易变得越来越便捷。如何在利用到互联网便利性的同时,有效的保护数据的安全与电子出版物的版权成为了一个亟待解决的课题。传统的信息加密技术通过加密算法将明文转换为无法阅读的密文,但这很容易引起攻击者的注意,而且难以应对暴力破解等手段。而音频信息隐藏技术将密文信息隐藏在载体音频中,这不仅能隐藏明文的内容,还能隐藏明文的存在,为保密信
去中心化系统是由高度自治的节点自由连接组成的开放式系统。中心化系统存在着中心服务器成本昂贵、过度依赖主干网、单点故障等问题。相比于中心化系统,去中心化系统则具有成本低廉、数据分布式存储且永久保存等优点。但是,去中心化技术带来好处的同时,也面临以下挑战:第一,去中心化系统中节点间物理距离与逻辑距离不匹配,造成数据传输中的带宽浪费;第二,去中心化系统基于内容寻址,数据查询耗时大、效率低;第三,去中心化
互联网技术的发展使得网络信息资源日益庞大。对于用户而言,海量的数据信息严重干扰其对信息的正确选择,因此信息利用率非常低。对于企业而言,满足用户个性化需求对其扩大用户规模具有不可替代的作用。推荐系统可有效解决信息过载问题,提供个性化服务,因此无论对于用户还是企业,个性化推荐系统的研究都具有重要的影响和意义。本文为获得更好的推荐性能,将强化学习方法应用到推荐算法中进行了研究,同时针对企业需求,设计和实
性能测试在通信设备的研发和生产中占据着重要的地位。在5G之前,OTA方法仅被应用于终端性能测试,基站的吞吐率性能通过将同轴电缆连接到基站端口的方式进行评估。对于5G时代的性能测试,由于基站集成度较以往大大提升,只有一体化的测试才能较好的评估其整体性能,传统的传导测试无法满足测试需求,因此对于5G OTA测试的研究,必须同时兼顾终端侧及基站侧。对终端侧的OTA测试,多探头微波暗室法(Multi-Pr
伴随着数字化时代的来临,各种硬件设备不断普及,社会上各大重要场合都安装了监控摄像头,这些监控摄像头组成了一个庞大而严密的监控网络,对企业、公司、社区的安防起到重要作用。目前人脸识别还是社区安防采用的主要技术。在监控场景中,由于光照,角度等问题,不是所有的情况都能拍摄到清晰的人脸,利用人脸识别来查询行人轨迹会导致行人轨迹不完整的情况。近些年比较火热的行人重识别技术是利用行人的图像来识别人物,该技术特
随着数字音乐产业的发展,歌单在音乐平台消费中扮演着越来越重要的角色。但目前大多热门歌单仍由人工创建,不仅耗时,还需音乐知识,因此需要一套生成系统来高效地创建歌单。这时主流的推荐算法在缺乏用户数据以及推荐新项目的情况下并不适用,而解决这类冷启动问题的办法一般是分析歌曲共有的语义属性,建立音乐与标签的关系。但对于语种、风格、场景、情感和主题等不同的标签,又存在着“语义鸿沟”等诸多难题,且以往人工设计的
移动边缘计算的出现使得终端的计算任务可以卸载到边缘侧的高性能服务器进行处理,大大提高了各种应用的表现,其中视频监控是边缘计算应用最广泛的场景。传统云模式下进行视频监测的计算和传输带宽负载较重,边缘计算能对视频监控系统进行时延和效率优化,但仍存在两大问题:一方面,目前国内外的相关研究大多集中在计算机视觉算法模型或整体框架的设计,仍停留在仿真或验证阶段,没有实际搭建一整套物联网系统并部署业务算法对比效
随着深度学习引入信息安全领域,原本陷入瓶颈的空间域图像信息隐藏和隐写分析学科又飞速发展起来,近几年涌现出多篇优秀研究成果。但是,由于深度学习的不可解释性和对数据集的依赖性,对于深度学习隐写分析算法来说,训练数据充足时,有关用于深度学习自动提取的隐写特征定量衡量的指标缺失,导致模型优化修改不够客观有量化指标;训练样本不充足时,未知隐写算法使用迁移学习训练过于主观,缺乏根据指标。因此,本文着眼于空间域
为应对流量增长和高速传输需要,下一代航空通信技术考虑在地空通信场景部署基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术的L频段航空通信系统(L-band Digital Aeronautical Communication System,L-DACS1),但航空信道的强多径、远距离、多普勒频移等特性容易引起严重的信道衰落,影响系
随着移动通信的不断发展,海量信息的传输,新兴的通信技术对高复杂度计算资源和低延迟约束的要求越来越高,计算密集型和时间敏感型应用的需求也日益苛刻。特别是在应急通信场景下,通信系统内小区宏基站的计算资源不足以支撑突发情况下激增的通信需求。同时移动终端设备本身计算资源和能耗也受到很大限制,仅仅依靠本地服务器很难在有限的时间内完成任务,恢复通信质量。边缘计算技术是5G移动通信的核心技术之一,通过部署边缘计