基于动态事件触发的多智能体分布式一致性控制研究

来源 :燕山大学 | 被引量 : 0次 | 上传用户:xxp520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,多智能体分布式一致性控制在移动机器人、无人机编队、网络化控制等方面有了广泛了发展,已经逐渐成为控制学科中的研讨热点。然而,对于其中最基本的一致性问题还存在着很多内容值得讨论,例如在实际生活中,通信往往通过共享网络执行,这意味着网络通信带宽和智能体的计算资源无法避免地受到限制。本文从这一点出发,通过结合动态事件触发的控制机制,对一般线性多智能体系统展开研究,在保证系统稳定性和一致性的前提下,减少不必要的通信次数和控制器更新频率。具体主要工作如下:(1)针对含有外部干扰的多智能体系统分布式一致性控制问题,设计出了一种新型的动态事件触发机制,给出了状态观测器和扰动观测器的一致性控制算法,理论上分析了所提出的动态事件触发机制相比于现有的方法能够进一步减少触发次数,从而节约网络通信资源。基于Lyapunov方法分析了系统的稳定性及一致性能,并且,通过在触发函数中添加一个指数项,证明了所提出动态事件触发机制的可行性,即能够保证排除Zeno触发行为。最后,通过仿真实例有效验证了所提出控制方法在节约通信资源方面的优势。(2)针对一般线性多智能体系统完全分布式一致性控制问题,结合前文提出的新型动态事件触发机制,提出了一种自适应控制算法。通过理论分析证明了所提出的算法可以避免智能体总数、Laplacian矩阵特征值等全局信息的使用,实现了多智能体系统的完全分布式控制,更有利于算法在实际中的应用。基于Lyapunov方法分析了系统的稳定性及一致性能,同时,设计了一种间歇通信的控制算法,解决了事件触发机制中相邻智能体之间仍需要连续通信的问题。最后,通过仿真实例再一次验证了所提出控制算法的可行性。(3)针对一般线性多智能体系统的双向一致性问题,基于动态事件触发给出了一种新的自适应控制算法,将耦合增益限制在合理的范围,避免了可能存在的参数漂移现象。同时,通过引入新的自适应触发参数,设计了一种具有自我调节能力的动态事件触发机制。给出了多智能体实现双向一致的条件,同时基于Lyapunov理论分析了多智能体系统的双向一致性能以及稳定性。通过计算理论上事件触发的最小触发间隔,排除了Zeno行为。通过仿真实验验证了在所提出的控制算法下,多智能体系统最终能够达到双向一致。
其他文献
随着科技的进步,越来越多的复杂系统涌现出来,产生的相关数据呈直线增长,这些数据对复杂网路的研究也起到了推动作用。链路预测是复杂网络的一个重要研究方向,主要解决的是如何通过已知的数据及其之间的相互作用关系,预测那些已经存在但尚未被观测到的数据、未来可能出现的数据和一些虚假的数据。随着链路预测的研究成果广泛应用于各个领域,如何提高链路预测精度成为了首要问题。本文的研究主要是基于网络拓扑结构的,以网络中
入侵检测一直是网络安全方向的热点课题,网络异常流量检测是组成入侵检测系统的重要工具。为了解决异常流量高维性、离群点容易造成分类模型过拟合和忽视异常流量内语言文本含有的丰富语义结构等问题,本文的主要研究如下:首先,针对网络流量维数过高的问题,提出一种基于信息增益率的前向特征选择算法。采用贪心策略将难以选取候选特征子集的问题的解决策略指定为计算流量记录里各特征的信息增益。还为提高数据的质量做出了贡献。
同步定位与建图(Simultaneous Localization and Mapping,SLAM)一直是移动机器人领域的研究热点。服务机器人在与环境的交互与感知中,需要记忆功能来完成认知任务,基于大脑空间认知模型的RatSLAM就有这一特点。RatSLAM可以像人类一样描述和记忆机器人经过的位置,使用场景的标志性特征,不需要高精度传感器,适用于长、宽范围的定位和导航。然而,RatSLAM的定位
随着科学技术的发展,系统的复杂程度不断提高,故障诊断在化工过程的生产运行中发挥着越来越重要的作用,可以有效提高系统的可靠性,减少事故的发生及系统故障引发的重大损失。但是在故障诊断中仍存在着诊断准确率和速度有待提高的问题,对此本文提出了一种基于模糊粗糙集(FRS)和网格搜索鲸鱼算法优化的支持向量机(GS-WOA-SVM)的故障诊断方法,具体工作如下:首先,提出了基于模糊粗糙集和支持向量机的故障诊断方
多无人机系统任务规划问题普遍存在于协同作战、数据收集、灾难救援等多个领域。该问题的研究目的在于控制无人机系统在复杂多样的任务环境中,按照最佳任务分配策略、任务执行顺序以及最优航行路线,以尽可能少的资源消耗高效地完成指定任务。高质量的任务规划方案对提高无人机系统的协作效率具有重要意义。首先,针对静态环境下的多异构无人机系统任务分配问题,构建了具有资源有限、任务优先级、负载均衡等多重约束的任务分配优化
水泥熟料中游离钙(free calcium oxide,f-Ca O)的含量是衡量水泥质量高低的重要指标。目前,熟料f-Ca O含量主要依靠人工离线采样检测,使其在指导质量控制和生产过程优化等方面有明显的滞后性。因此,本文以熟料f-Ca O含量为研究对象并基于数据驱动的软测量技术,提出了基于注意力机制和CNN的水泥熟料f-Ca O含量软测量方法,用于实现水泥熟料f-Ca O含量的实时在线监测。具体
冷带轧机液压厚度(Hydraulic Automatic Gauge Control,HAGC)系统由于自身具有快响应、高精度、高承载等特点被广泛应用于各个领域,但HAGC系统的控制性能受测量时延、外界扰动和不确定性等因素制约,为了提高板带材锻造的精度,本文针对冷带轧机液压厚度系统的稳定跟踪控制问题,提出智能反步控制策略,主要内容如下:首先,针对具有外界扰动和测量时延的冷带轧机液压厚控系统,提出基
Markov跳变系统是一种特殊的混杂系统,由系统的状态和系统的模态两部分组成。其特点是能更好地模拟动态系统结构突变情况,比如环境突变,子系统的关联改变,系统的组件损坏以及人为干预等。因为有如此优良的性能,所以Markov跳变系统模型一直是控制领域的研究热点。本文对Markov跳变系统的异步控制问题进行研究,具体工作如下:首先,针对具有时变时滞和扰动的Markov跳变系统,研究基于混合观测器的异步控
全球能源短缺和环境污染的影响使得电动汽车正在逐渐地代替燃油汽车。随着电动汽车的普及,其大规模化地接入电网充电即将成为一种趋势,将会对城市电网的正常运行造成巨大的挑战。由于大量电动汽车充电会对电网产生较大影响,因此对电动汽车的日负荷进行预测和优化是必要的。为此,本文对相关问题进行了研究,以实现对电动汽车日负荷预测及其峰谷差优化。首先,针对电动汽车日负荷预测问题,本文提出了一种基于双链马尔科夫和决策树
制造业有着夯实经济基础的重要作用,国家对制造业的重视程度越来越高,传统车间生产已经不能满足生产要求,因此建设智能工厂是制造业未来发展的趋势。在建设智能工厂过程中,明确需求并给出合理科学的方法是必要可行的。本文从智能工厂的需求出发,建立了智能工厂生产架构,同时对调度的方法做了详细阐释。首先,指出了传统企业在建设智能工厂过程中出现的问题,对智能工厂的需求进行了分析,给出了基于需求的智能工厂生产解决方案