【摘 要】
:
人脑在人类情感的产生过程中起到了至关重要的作用,基于脑电(Electroencephalogram,EEG)的情绪识别研究日益得到国内外学者的关注。有效挖掘大脑的功能机制为情绪识别提供了新的见解,对系统级视角下理解人脑组织的连接模式以及情绪产生的方式至关重要。认识人脑不同脑区在功能上分工与协同的规律是情绪分析的关键,然而现有的情绪识别研究在这一方面存在两个不足之处:研究者对于大脑的探究多从能量角度
论文部分内容阅读
人脑在人类情感的产生过程中起到了至关重要的作用,基于脑电(Electroencephalogram,EEG)的情绪识别研究日益得到国内外学者的关注。有效挖掘大脑的功能机制为情绪识别提供了新的见解,对系统级视角下理解人脑组织的连接模式以及情绪产生的方式至关重要。认识人脑不同脑区在功能上分工与协同的规律是情绪分析的关键,然而现有的情绪识别研究在这一方面存在两个不足之处:研究者对于大脑的探究多从能量角度和全局角度出发,忽略了功能上各脑区的关联关系以及大脑局部的有效连接特征;且大脑处理情绪活动时的信息交互模式具有时变性和强连接性,目前仅对于大脑静态层面的分析无法有效反映出情绪产生时脑区之间连接的动态变化规律。本文的主要内容以及创新点旨在解决以上两个问题,具体如下:(1)基于静态脑网络分离与整合的情绪识别为了解决全局尺度上的脑网络拓扑特征不足以反映脑区之间耦合关系的问题,本文提出了基于全局和局部尺度上脑电通道信息之间相位同步关系的情绪识别方法。利用相位锁值(Phase Locking Value,PLV)度量各通道EEG的相位同步程度,描述大脑的功能连接关系。构建好PLV脑网络之后,融合功能整合与分离这两类属性以分析不同情绪的大脑连通性差异。进一步,通过社区检测构建脑网络的模块化结构以提取其更全面的局部特性进行连通性分析。研究结果表明,较积极情绪,消极情绪下脑区具有更高的相位同步性、更复杂的大脑连通模式以及更明显的模块化结构。此外,本文发现了与情绪刺激相关的关键皮层脑区作为脑网络枢纽主导情绪处理活动。通过在DEAP数据集上的验证发现,本研究的分析框架有效提高了情绪识别精度。(2)基于动态脑网络Rich-club结构的情绪识别为了解决单纯从静态层面分析EEG无法发掘大脑处理情绪活动时信息交互模式的时变性的问题,本文提出了一种情绪分析框架,通过量化不同时间窗下的相位同步关系来揭示各脑区在功能上动态协调工作的规律。大脑中存在这样的中枢区域(hubs),它们具有高度连接和高度中心的特点,负责协调脑区之间的动态交互。本文构造了情绪相关的动态脑网络,并研究这些网络hubs的反映功能连通性的结构。该框架证明了网络hubs形成了一个被称为“rich-club”的紧密联系的组织,可以作为识别不同情绪的网络核心架构。结果表明,不同情绪所产生的动态连通模式是不同的,具体表现在rich-club组织的不同。本研究中与情绪相关的rich-club结构的发现,对研究人类情绪活动背后的大脑机制具有重要意义。
其他文献
图像语义分割是计算机视觉研究的重要内容,在图像理解中起着关键性作用。早期传统的图像分割是通过颜色、纹理、亮度和形状等特征,把图像分成若干具有相同含义的区域。但是,这种分割技术的特征识别度低,在对图像进行分割时,只能提取到低层特征,导致分割性能较差。随着计算机技术的更新换代以及深度学习在计算机视觉的成功应用,图像分割逐渐进入到了可以通过深度网络提取特征的图像语义分割阶段。近年来,深度学习的日益强大极
辅助驾驶系统和自动驾驶系统的研究与发展使得交通场景中的目标检测任务己经成为当前目标检测研究领域内的重要分支,其研究内容包括行车道路中的障碍物检测、行人检测、车辆识别与车道线的检测等。实际的交通场景中普遍存在着目标之间的遮挡、光线明暗不均以及小目标众多等影响因素,复杂的交通环境使得大多数目标检测算法对小目标和目标间的遮挡等问题的检测性能较差。目前与基于传统图像处理的目标检测方法相比,大多数基于深度学
量子保密通信是量子力学的基本原理和信息通信理论相互结合产生的交叉学科,有着量子力学和信息通信学科各自的优点,量子保密通信有许多经典通信无法比拟的优势。因为独特的通信安全优势,近年来,量子保密通信的研究进展不断突破,将会在通信与信息技术领域引发新的技术浪潮。量子卫星通信作为量子保密通信的重要组成部分,在各国研究团队坚持不懈的努力下,量子卫星通信也得到了健康良好的发展,为构建广域量子卫星通信网络打下了
随着云计算技术的不断发展,越来越多的个人和企业选择使用云存储应用来存储数据。作为一种新兴的应用模式,云存储为用户提供数据快速存储和检索等服务,有效地解决了数据爆发式增长带来的数据存储问题。然而,由于用户失去了对存储在云端数据的控制权,而且云存储服务器不是完全可信的,这导致云存储中用户隐私数据泄露以及数据篡改等安全问题频频发生,严重阻碍了云存储的进一步发展与应用。属性基签名(Attribute-ba
极化合成孔径雷达(Polarimetric Synthetic Aperture Radar,PolSAR)采用多频率、多通道的成像方式,能够不分昼夜地进行对地监测,同时还具有穿透力强、分辨率高等优点。作为PolSAR影像解译的关键技术之一,PolSAR图像分类一直受到国内外研究者的热切关注。PolSAR图像分类是一种像素级别的密集预测任务。近些年卷积神经网络(Convolutional Neur
随着信息时代的发展,数据量日益增加。云存储技术的出现对数据的存储和共享带来了很大的便利,同时也带来了巨大的安全威胁。云存储服务器(Cloud Storage Server,CSS)往往容易受到外部敌手和内部敌手的攻击,采用普通的加密技术虽然可以保护数据隐私,但在使用时需要将远程文件全部下载到本地逐一进行解密,这无疑增加了系统资源的浪费。尽管数据加密被认为是保护数据机密性的一种简单而且有效的方式,但
人脸表情识别技术在人机交互、智慧交通和医疗等领域有广泛的应用,在计算机视觉和深度学习等领域也取得了越来越多的关注。人脸表情识别的核心技术之一是图像特征表达,目的是提取到辨识力高、鲁棒性强的特征。现已有众多学者针对人脸表情识别的关键技术开展了一定的研究工作,但在提高识别精度方面仍然是一个巨大的挑战。本文以人脸表情识别技术中的特征学习和显著性区域检测等关键问题开展研究工作,提高了识别方法的精度。主要研
图像超分辨率重建方法是通过硬件或软件的方式,将高分辨率图像从一系列相关的低分辨率图像中恢复出来的过程。当前,在实现图像超分辨率重建的方法中,机器学习和深度学习是两个对图像重建质量较好的方法。因此,本文基于这两种方法对图像重建算法进行了研究。基于邻域嵌入的自学习图像超分辨率算法是一种基于机器学习的算法。提取图像深层特征的超分辨率重建网络是一种基于深度学习的算法。本文对图像超分辨率研究的主要内容有:(
携能双向中继网络(Two-Way Relaying Network,TWRN)利用能量收集(Energy Harvesting,EH)技术,能够在完成高可靠性通信的同时延长中继节点的工作寿命。已有针对携能TWRN中系统中断性能的研究大多基于理想硬件假设,即不考虑各类损伤(如高功率放大非线性、射频电路噪声等)对收发机的影响。然而,在实际的通信网络中,收发机不可避免地会遭受着诸多因素的影响。尽管已相继