【摘 要】
:
随着我国高铁里程数的快速增长,高铁运营速度也在持续提升,我国对动车组行驶时的平稳性及安全性保障也越发重视,相关的科研与分析就显得十分重要。道岔是高速铁路中不可或缺的部件之一,但也是其薄弱环节之一,时常面临着钢轨疲劳损伤严重,打磨维护成本高的问题。本文以客专线18号可动心轨道岔为研究对象,基于NURBS曲线理论拟合出辙叉区钢轨关键截面廓形;以辙叉区钢轨廓形上的16个型值点为设计变量,以打磨材料去除量
论文部分内容阅读
随着我国高铁里程数的快速增长,高铁运营速度也在持续提升,我国对动车组行驶时的平稳性及安全性保障也越发重视,相关的科研与分析就显得十分重要。道岔是高速铁路中不可或缺的部件之一,但也是其薄弱环节之一,时常面临着钢轨疲劳损伤严重,打磨维护成本高的问题。本文以客专线18号可动心轨道岔为研究对象,基于NURBS曲线理论拟合出辙叉区钢轨关键截面廓形;以辙叉区钢轨廓形上的16个型值点为设计变量,以打磨材料去除量和脱轨系数的减少为目标函数,以廓形几何条件和滚动接触疲劳因子为约束条件,建立了辙叉区钢轨打磨廓形设计模型。通过粒子群算法求解模型,得到了辙叉区钢轨4个关键截面下的设计打磨廓形。基于Workbench软件,本文建立了辙叉区钢轨轮轨接触有限元模型,对比标准廓形和设计打磨廓形4个关键截面处的接触面积、接触应力以及von-Mises应力;通过输入标准廓形和打磨廓形,本文在UM软件中建立了18号道岔变截面模型,对比分析了列车逆侧向过岔时,两种廓形下的动力学响应评价指标;基于有限元模型中得到的辙叉区钢轨接触应力和动力学模型中得到的轮轨垂向力-时间曲线,通过Fe-Safe软件建立了辙叉区钢轨疲劳分析模型,对比标准廓形和设计打磨廓形4个关键截面处的最小疲劳寿命。同时,本文通过实测LMa车轮磨耗廓形数据建立了磨耗车轮模型,探究车轮磨耗产生的型面演变对于设计打磨廓形匹配状态、动力学性能、轮轨接触力学以及最小疲劳寿命的影响。此外,本文还探究了不同因素对于轮轨接触有限元应力、动力学响应以及疲劳寿命的影响,结果表明:1)在车辆动力学性能对比中,采用设计打磨廓形后,轮轨横向力由55.3k N降低至49.6k N,减小了10.3%;轮重减载率由0.348降低至0.311,减小了10.6%;脱轨系数由0.784降低至0.721,减小了8.1%;车体横向振动加速度由0.301m/s2降低至0.254m/s2,减小了15.6%;轮轨垂向力由132k N降低至121.6k N,减小了7.88%。列车逆侧向过岔时的平稳性提升,轮轨力下降,安全性也得到了保障。2)在轮轨接触力学对比中,采用设计打磨廓形后,各关键截面的von-Mises应力分别下降了8.4%、8.0%、12%和9.5%;各关键截面的接触应力分别下降了12.9%、15.8%、17.9%和16.5%。打磨廓形有效地降低了轮轨接触应力及von-Mises应力,增大了接触区域面积,有利于降低列车过岔时的轮轨磨耗及损伤破坏。3)在疲劳寿命对比中,采用设计打磨廓形后,各关键截面的最小对数疲劳寿命分别从5.82、5.94、5.61、5.62提升至6.22、6.32、6.04、6.01。设计打磨廓形有效地提升了辙叉区钢轨各关键截面的最小疲劳寿命。4)轮轨磨耗产生的车轮廓形演变对于辙叉区钢轨设计打磨廓形的各方面性能有较显著的影响。动力学响应会持续变化,呈现整体的下降或上升趋势。各截面的接触应力在15万公里处达到最大值,分别为3549.8MPa、3059.4MPa、2292.7MPa和2582.1MPa。各截面的最小对数疲劳寿命在在15万公里处达到最小,分别为5.42、5.73、5.05和4.58。
其他文献
目标跟踪是计算机视觉领域的一个研究热点,在智能监控、无人驾驶、人机交互和国防军事等领域都有着非常重要的研究价值,它的主要任务是为了获取视频或者图像序列中感兴趣目标的位置以及运动轨迹,为进一步的语义层分析提供基础信息。根据场景中运动目标数目的不同,目标跟踪可以分为单目标跟踪和多目标跟踪,多目标跟踪相对于单目标跟踪的复杂程度更高,涉及了数据关联。单目标跟踪可以简单理解为只需要完成对视频中单个目标连续数
神经系统作为一个典型的复杂系统,是系统神经科学和计算神经科学的主要研究对象,考虑其构成的多样性和差异性,通常采用规则网络、小世界网络和无标度网络来研究神经系统群体的电活动行为和协作性。在实际的神经系统中,神经元之间通过化学突触、电突触连接来实现信号的编码和传递。生物神经元的突触具有可塑性,因此在实现信号传递过程中要考虑突触耦合通道的效率和可控性,并且探究耦合通道的生物物理属性对于进一步认知神经元网
近年来,开发高效的绿色化学方法合成金属纳米颗粒已成为研究热点。在众多金属纳米颗粒中,银纳米颗粒(AgNPs)在生物医学、生物传感器、催化、制药、纳米科学和纳米技术等领域发挥着关键作用。传统的AgNPs合成方法成本高、有毒且不环保,因此利用绿色化合物制备AgNPs是考虑最多的方法之一。在这些绿色化合物中,植物黄酮类化合物具有众多优势。黄酮类化合物已被证明具有多种有价值的生物学功能,如:抗氧化、抗菌、
随着路网布局优化,高速铁路建设正向中西部地区快速推进,中西部地区面临自然环境复杂,长大坡道桥上无砟轨道无缝线路将得到广泛应用。位于坡道上的桥上无砟轨道,因梁体温差引起的伸缩变形会对梁缝附近扣件受力产生显著影响,若与其他外界荷载叠加可能导致梁端扣件受力超限,在梁端设置过渡板可改善梁端轨道结构受力变形特性,过渡板结构参数取值对保证梁端轨道结构合理受力与列车运行安全具有重要意义。本文建立了大坡道桥上无砟
随着城市轨道交通快速发展,钢轨波磨问题引起广泛关注。钢轨波磨在地铁线路频繁发生,危害巨大,加剧轮轨系统振动噪声,缩短车辆及轨道部件的使用寿命,影响乘车舒适性,甚至危及行车安全。钢轨波磨与轮轨系统动力特性关系密切,是轮轨系统尚未完全解决的难点和热点问题。本文在综合分析国内外钢轨波磨及轮轨动力学研究现状的基础上,通过现场测试与数值分析相结合的方法,开展了地铁钢轨波磨地段轮轨动力特性研究,针对波磨的预防
高速铁路已成为人们出行常用的交通方式,而高速铁路路基是上部轨道结构的基础,且路基的稳定性影响着列车的平稳运行,如何确保高铁路基稳定性已成为重要的研究课题。因此,通过现场调研对京广高速铁路k1609+720—k1609+820段路基的变形特征机理进行了探讨。以该工程为依托建立三维路基有限元分析模型,开展了高铁路基的变形机理分析,然后对影响路基稳定性的因素进行分析,得到了不同工况下路基的变形规律,并对
道岔作为轨道结构中的关键部件,其结构复杂,使用频繁,是轮轨系统中最容易发生磨损的部位之一,随着我国高速列车的提速运营,道岔磨耗问题变得日益严重。在总结国内外学者对道岔研究的基础上,以道岔转辙器区域直尖轨为研究对象,采用Non-Uniform Rational B-Splines(NURBS)双三次曲面理论,以实测的32个磨耗型面数据作为基础输入值,每条型面曲线设置19个插值点,以U V两个方向上的
随着重载铁路技术在我国运用越来越广,兼具时效性与载运量的重载货车有效缓解国内铁路货运供需矛盾。重载铁路在运营过程中会难以避免的产生大量钢轨轨头严重磨损的过度磨耗钢轨,影响正常的轮轨关系,甚至会引起列车脱轨等严重安全事故。应对钢轨异常磨耗现象,对钢轨进行打磨廓形维护可以有效解决钢轨病害、延长钢轨的生命周期。针对过度磨耗钢轨进行打磨维护需要基于现场的测量情况进行打磨廓形设计,但现有的廓形设计方法多是以
作为服务于城市轨道交通系统的新型市域车辆,跨座式单轨车辆与传统双轨车辆相比,有以下独特优势:爬坡能力强、适应性强、噪声低、占地小、建设成本低、建造周期短,因而得到较为广泛应用。跨座式单轨车辆为新型车辆,大量的运行试验在车辆研发制造过程中必不可少,由于国内的单轨车辆运营线路较少,无法进行大量的试验。若为单一车辆修建专门的试验线进行试验,成本高且无法兼容不同类型车辆;若建造单轨车辆滚振试验台,则造价低