莰烯醛缩氨基硫脲类化合物的合成及抗菌活性

来源 :化学研究与应用 | 被引量 : 0次 | 上传用户:qmdx521
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
用莰烯醛为原料,分别与氨基硫脲、4-苯基-3-氨基硫脲、4-甲基-3-氨基硫脲反应,合成了3种莰烯醛缩氨基硫脲类化合物:莰烯醛缩氨基硫脲(3a)、莰烯醛缩-4-苯基氨基硫脲(3b)、莰烯醛缩-4-甲基氨基硫脲(3c).3个化合物的结构通过核磁共振、红外光谱和质谱分析进行了表征;并且采用菌丝生长法对10种植物病原菌的生长进行了抑制试验.抑菌实验表明:莰烯醛缩氨基硫脲(3a)对其中9种植物病原菌的抑制率均比3b和3c高,特别是对枇杷炭疽病菌、彩绒革盖菌、油茶炭疽病菌、油茶果生刺盘孢菌,在药液浓度为50 mg·L-1时的抑制率(%)分别达到100,100,100,93,远远高于对照样百菌清;3c和3b对水稻纹枯病菌的抑制率明显高于3a,相当于百菌清.
其他文献
研究了尿素-氯化胆碱低共熔溶剂DES的制备方法.通过监控制备过程中折光率、电导率和密度等性质指标的变化,考察了尿素-氯化胆碱DES合成规律及影响因素.采用红外光谱表征了所合成DES的分子结构.使用AMS软件中COSMO-RS模块对DES其中的尿素和氯化胆碱分子中的表面电荷密度分布进行了模拟,剖析了氢键作用机制.比较了干法和湿法制备DES对所得产物性质的影响.针对湿法制备的实验结果表明,在氯化胆碱与尿素摩尔比1:2,第一阶段温度控制在80℃脱水,第二阶段温度控制在120℃深度脱水,所得DES与干法制备的DE
本文采用以盐酸溶液为水相、四氯化碳为有机相的界面聚合法,通过向水相中分别引入具有非对称结构的甲醇和乙醇,以及具有对称结构的异丙醇和丙三醇作为共溶剂,成功制备出聚苯胺纳米纤维.采用场发射扫描电镜、紫外可见光谱和傅里叶红外光谱对其形貌和结构进行了表征分析,并通过循环伏安测试、恒流充放电测试和交流阻抗测试着重研究了不同共溶剂在酸性电解液下对聚苯胺纳米纤维储能性能的影响.研究表明:共溶剂的引入能够提高聚苯胺的质子化程度,有利于改善电化学性能.其中,以具有对称结构的异丙醇为共溶剂所制备的聚苯胺纳米纤维具有最低的电化
本文采用一步合成法制备不同摩尔比的TEAC-MEA DES;通过测定熔点,以及分析核磁和红外得出TE-AC-MEA DES之间是依靠氢键作用形成的DES.DES通过化学吸附CO2,生成了氨基甲酸酯,从而实现CO2的捕集;还研究了温度、HBA/HBD摩尔比、水含量、气体流速对DES吸收CO2的影响,结果表明CO2的吸收量随着温度的降低和摩尔比的增加而增加,少量水对DES吸收CO2影响较小,气体流速增加了CO2在体系中的传质效率,同时缩短了吸收达到平衡的时间.
以1-[二-(4-氟苯)甲基]哌嗪、端炔及单质硫为原料,应用吡啶为催化剂和溶剂,在80℃反应24h以18~84%的收率制得了17个含有1-[4-二-(4-氟苯)甲基哌嗪官能团的硫代酰胺衍生物3(a~q).合成的17个目标化合物通过熔点测定和质谱、红外光谱及氢(碳)核磁共振谱分析对其结构进行确证.并进行了体外抗肿瘤及抗菌活性测试,测试结果表明所有化合物对大肠杆菌(E.coli)及金黄色葡萄球菌(S.aureus)的活性具有一定的抑制作用,其MIC可达64ug·mL-1,IC50分别为42.74 ug·mL-
采用逐步静电自组装及冰晶模板法制备了负载有金-钯双金属纳米颗粒(Au-Pd NPs)的Au-Pd/H-C3 N4/Ti3 C2 Tx复合材料,并用于对核黄素(Rf)和槲皮素(Qu)的定量同步电化学检测研究.结果表明,Au-Pd NPs的引入进一步改善了材料的导电性和电催化活性,加快了H-C3 N4与Ti3 C2 Tx之间的电子转移并提供了部分活性位点,提高了复合材料的电化学性能.该复合材料对Rf和Qu具有良好的电化学传感性能,实现了对Rf和Qu的单独电化学检测.结合不同浓度比条件下Rf和Qu的电流响应矩阵
本文合成了La3+掺杂的CdS量子点(CdS:La QDs),以其作为发光材料.将量子点吸附于玻碳电极(GCE)表面.采用卡那霉素(Kana)的适配体(apt)及其互补链(cDNA)制备传感器,使apt与cDNA在电极表面杂交形成双链DNA(dsDNA),然后用氯化血红素(hemin)溶液孵育该修饰电极,使hemin嵌入至dsDNA中,制得Kana电化学发光适配体传感器,记作hemin-dsDNA/CdS:La/GCE.建立了简便、灵敏的检测Kana的电化学发光(ECL)方法,当不存在Kana时,电极表面
采用水热原位合成技术制备了MnO2、MnO2/CNTs及MnO2/CNTs纳米复合材料,研究了MnO2/CNTs/PTFE三元复合材料在化学电源领域的应用.用X射线衍射分析材料结构、扫描电镜与透射电镜观察材料形貌,用恒流充放电、循环伏安、交流阻抗谱研究其用作超级电容器和锂离子电池负极材料的电化学性能.结果表明,导电载体、PTFE的复合、反应时间等对所制备纳米材料的微观形貌有着显著影响,也直接影响到材料的电化学性能.水热反应36h时,得出最佳比电容为186 F·g-1,在1000周内能保持良好的循环性能.
本研究以低成本、易规模化的亲水性石墨烯/氧化石墨烯为前驱体,通过原位聚合的方法制备石墨烯/氧化石墨烯/聚苯胺复合材料,经过化学还原后制备得到石墨烯/还原氧化石墨烯/聚苯胺复合材料.采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和傅里叶红外变化光谱仪(FT-IR)对制备的材料进行了结构和形貌的表征.运用循环伏安法(CV)、恒电流充放电法(GCD)、电化学阻抗法(EIS)等测试复合材料的电化学性能,结果表明,与纯聚苯胺和石墨烯/氧化石墨烯/聚苯胺相比,石墨烯/还原氧化石墨烯/聚苯胺复合材料的电化学性能
文文建立了不同水体中10种氯苯类化合物的顶空-气相色谱质谱的检测方法;优化了10种氯苯类化合物的最佳顶空条件,10种氯苯类化合物的最佳顶空条件为水样pH5~6,氯化钠加入量为4.0g,顶空加热平衡温度55℃,加热平衡时间20min,震荡,在此顶空条件下,可以获得满意的10种氯苯类化合物的响应值和回收率.10种氯苯类化合物在0.0~2.5μg·L-1范围内线性良好,内标曲线的相关系数均大于0.995.该方法检出限为0.02μg·L-1~0.04μg·L-1.在低、中、高3个加标浓度水平下,不同水体中10种氯
针对低渗透储层粘土矿物水化膨胀、运移以及注水压力高而导致油田采收率大幅度降低的问题,作者以长碳链烷基叔胺和1,3-二溴丙烷为原料合成系列阳离子Gemini表面活性剂(Cn-3-Cn),以乙二胺和甲酸为原料合成了有机铵盐类防膨剂(EMN),并将二者以一定比例复配,通过评价防膨性能、表/界面活性,得出表面活性剂C14-3-C14与防膨剂的复配效果最好.在0.1%C14-3-C14中加入1.5%EMN+0.5%KCl,防膨率为84%,水洗10次之后防膨率稳定在65%左右;在0.1%C14-3-C14+0.5%K