向量分组聚集计算技术研究

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:qg101213
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
分组聚集计算是OLAP重要的操作符之一,分组聚集操作是一种数据密集型负载。在内存数据库和GPU数据库应用场景下不仅需要研究其性能优化技术,还需要研究如何优化分配分组聚集计算执行场地以最小化CPU与GPU之间的数据传输代价。针对异构计算平台的硬件特征提出了向量聚集计算技术,将位于传统流水线末端的分组聚集计算按照"早分组,晚聚集"策略进行分解与下推,实现将数据密集型的分组聚集计算从流水线中分离,将操作与处理器计算特性优化匹配,实现异构计算平台上最优的负载分配。通过将传统基于哈希分组的聚集计算转换为向量分组
其他文献
命名实体识别技术是信息抽取、机器翻译、问答系统等多种自然语言处理技术中一项重要的基本任务。近年来,基于深度学习的命名实体识别技术成为一大研究热点。为了方便研究者
机载软件的测试与验证是保障机载软件正确性和可靠性的重要方法。软件的测试与验证离不开工具的支持,使用工具能够提高效率、降低成本,对机载软件的测试验证工具研究是对其进