一种基于改进的MobileNetV2网络语义分割算法

来源 :电子学报 | 被引量 : 0次 | 上传用户:px520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于金字塔卷积神经网络的语义分割算法准确率很高,但是其计算资源消耗巨大、算法执行时间长、无法满足实时性要求.为了解决这个问题,本文做出了以下改进:(1)用MobileNet替换原网络的结构,减少了网络运算时间和内存开销;(2)引入编码器-解码器结构提高输出图像的分辨率,进一步细化分割结果;(3)针对高分辨率图像推断时间过长的问题,本文设计了多级图像输入方法,降低了网络推断高分辨率图像所消耗的时间.本文在VOC 2012数据集和Cityscapes数据集上进行了测试,并与FCN、SegNet、Deep
其他文献
生成适应模型利用生成对抗网络实现模型结构,并在领域适应学习上取得了突破.但其部分网络结构缺少信息交互,且仅使用对抗学习不足以完全减小域间距离,从而使分类精度受到影响