【摘 要】
:
连续域蚁群优化算法在处理高维问题时易陷入局部最优,而且收敛速度较慢。针对这些问题,提出了一种改进的连续域蚁群优化算法。该算法将解划分为优解和劣解两部分,并在迭代过程中
【机 构】
:
江南大学物联网工程学院,轻工过程先进控制教育部重点实验室(江南大学)
【基金项目】
:
江苏省普通高校研究生科研创新计划项目(No.KYLX15_1169);江苏高校优势学科建设工程资助项目
论文部分内容阅读
连续域蚁群优化算法在处理高维问题时易陷入局部最优,而且收敛速度较慢。针对这些问题,提出了一种改进的连续域蚁群优化算法。该算法将解划分为优解和劣解两部分,并在迭代过程中动态调整优解和劣解的数目。对于优解,利用全局搜索策略进行预处理,这样能提高算法的收敛速度和收敛精度。对于劣解,则利用随机搜索策略进行预处理,这样能扩大搜索范围,增强搜索能力。通过标准测试函数对所提算法进行测试,结果表明改进策略能够有效提高连续域蚁群优化算法的收敛速度并改善解的质量。
其他文献
针对大部分航迹规划算法在陷阱空间下,存在规划时间长、成功率低的问题,提出了一种改进RRT算法。通过将人与RRT算法相结合,由人设置虚拟目标点,引导航迹搜索走出陷阱空间;同时对节点扩展进行优化,保证航迹搜索在可行域内;并设置快速收敛策略,删除冗余节点,使航迹搜索速度加快。最后,通过仿真验证表明,该方法在陷阱空间规划中具有良好的效果,可快速规划可行航迹。
为了改进中文手写签名真伪鉴别系统的性能,提出了一种混合极限学习机和稀疏表示的层次化分类方法。首先,利用极限学习机强大的泛化能力和鲁棒性,对较易识别的伪签名进行分类,如随机伪造的签名;接着,利用稀疏表示分类具有的精准描述性能,设计签名数据字典,对较难识别的伪签名进行分类,如熟练伪造的签名。实验结果表明,层次化分类的签名鉴别方法与前沿的两种方法相比总体准确率最高,达到了95.53%。
传统分类器的构建需要正样本和负样本两类数据。在遥感影像分类中,常出现这样一类情形:感兴趣的地物只有一种。由于标记样本耗时耗力,未标记样本往往容易获取并且包含有用信息,鉴于此,提出了一种基于正样本和未标记样本的遥感图像分类方法(PUL)。首先,根据正样本固有特征并结合支持向量数据描述(SVDD)从未标记集筛选出可信正负样本,再将其从未标记集中剔除;接着将其带入SVM训练,根据未标记集在分类器中的表现
毒死蜱对农产品的污染及人类健康的危害引起国内外学者的广泛重视。文章主要对毒死蜱残留分析方法、加工和储存行为、畜禽代谢、国内外残留标准以及风险评估等方面的研究进行
链接预测是社会网络分析领域的关键问题。传统的链接预测方法大多针对社会网络的静态结构预测隐含的链接或者将来可能产生的链接,而忽视了网络在动态演变过程中的潜在信息。
针对粒子群优化算法在处理信息系统中属性约简收敛速度慢、早熟的问题,提出了一种结合云模型的量子粒子群优化算法(CQPSO)的属性约简方法。改进量子粒子群优化算法,即利用量