论文部分内容阅读
为了增强集成系统中各分类器之间的差异性,提出了一种使用旋转森林策略集成两种不同模型分类器的方法,即异构多分类器集成学习算法.首先采用旋转森林对原始样本集进行变换划分,获得新的样本集;然后通过特定比例选择分类精度高的支撑矢量机或分类速度较快的核匹配追踪作为基本的集成个体分类器,并对新样本集进行分类,获得其预测标记;最后结合两种模型下的预测标记.该算法通过结合两种不同分类器模型,实现了精度和速度互补,将二者混合集成后改善了集成系统泛化误差,相比单个模型集成提高了系统分类性能.对UCI数据集和遥感图像数据