论文部分内容阅读
隐式篇章关系识别是自然语言处理中一项富有挑战性的任务,旨在判断缺少连接词的两个论元(子句或者句子)之间的语义关系(例如转折)。近年来,随着深度学习在自然语言处理领域的广泛应用,各种基于深度学习的隐式篇章关系识别方法取得了不错的效果,其性能全面超越了早期基于人工特征的方法。文中分三大类对最近的隐式篇章关系识别方法进行讨论:基于论元编码的方法、基于论元交互的方法和引入显式篇章数据的半监督方法。在PDTB数据集上的实验结果显示:1)通过显式地建模论元中词或文本片段之间的语义关系,基于论元交互的方法的性能明显好于