论文部分内容阅读
研究一种基于改进的生成对抗网络的深度学习方法对海马体进行分割。提出不同的卷积配置,以捕获由分割网络获得的信息。提出以Pixel2Pixel为基本架构的生成对抗网络模型,生成模型结合残差网络以及注意力机制的编解码结构以捕获更多细节信息。判别网络采用卷积神经网络对生成模型的分割结果和专家分割结果进行判别。经过生成模型和对抗模型不断地传递其损失,使生成模型达到分割海马体的最优状态。使用来自ADNI数据集130名健康受试者的T1加权MRI扫描和相关海马标签作为训练和测试数据,以相似度系数作为评价指标,准确率