Femtosecond laser irradiation induced heterojunctions between carbon nanofibers and silver nanowires

来源 :材料科学技术(英文版) | 被引量 : 0次 | 上传用户:chentao805
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
We report the direct joining of carbon nanofibers(CNFs)to silver nanowire(Ag NWs)by controlled irradiation with femtosecond(fs)laser pulses.Two separate types of nano-junction dependent on joint geometry,laser fluence and irradiation time are identified in irradiated mixtures.In one type of junction,the tip of an Ag NW is melted and flows to form a bond with an adjacent CNF.The second type of junction occurs without significant heating of the Ag NW and involves the softening and flow of carbon in the CNF in response to the transfer of plasmonic energy from the Ag NW into the CNF.Bonding in a T-type joint configuration can be of either kind depending on the relative orientation of the incident optical field and the long axis of the Ag NW.FDTD simulations were used to explore this effect for different joint geometries and laser polarization.The electrical properties of a heterojunction involving a single Ag NW-CNF structure have been measured,and it is found that the junction resistance can be reduced by six orders of magnitude after laser joining.Finally,we have investigated the properties of a strain sensor based on an Ag NW-CNF hybrid nanowire network and find that this device can exhibit high sensitivity.This sensitivity occurs as nano-junctions induced by fs laser irradiation greatly reduces the initial resistance.This laser-based technique for direct nanojoining of CNF and Ag NWs may enable the design of robust nanowire structures for application in a variety of new devices.
其他文献
The microstructure and chemical compositions of the solid solution-treated Mg-3Nd-1Li-0.2Zn alloy were characterized using optical microscope,scanning electron microscope(SEM),transmission electron microscope(TEM),electron probe micro-analyzer(EPMA)and X-
The risk of leakage and low thermal conductivity severely hinder the wide application of phase change materials(PCMs).In this work,the high-density polyethylene/carbon nanotubes(HDPE/CNTs)porous scaffolds were successfully fabricated via a sacrificial tem
Metal and alloy nanoparticles synthesized by chemical reduction have attracted increasing attention due to their superior physical,chemical,and biological properties.However,most chemical synthesis processes rely on the use of harsh reducing agents and co
Aberration-corrected scanning transmission electron microscopy has been used to study a novel metastable phase,designated as β“phase,induced to form by electron beam irradiation in a Mg-9.8 wt.%Sn alloy.This phase is spherical in three dimensions,having a
Dissimilar welding of AZ31/ZK60 magnesium alloys with a thickness of 2 mm was successfully carried out by the double-sided friction stir spot welding with adjustable probes.A dissimilar joint bearing flat surfaces on both sides without a keyhole was obtai
Grain growth and shrinkage are essential to the thermal and mechanical stability of nanocrystalline metals,which are assumed to be governed by the coordinated deformation between neighboring grain boundaries(GBs)in the nanosized grains.However,the dynamic
The fracture of metallic glasses(MGs)of different compositions and sizes down to micrometers under torsion loading were systematically investigated.Contrary to the flat shear fracture along the circumfer-ential plane as commonly supposed under torsion,we
Developing anatase/rutile phase-junction in TiO2 to construct Z-scheme system is quite effective to improve its photoelectrochemical activity.In this work,the anatase/rutile phase-junction Ag/TiO2 nanocomposites are developed as photocathodes for hydrogen
The underlying mechanism of discontinuous yielding behavior in an ultrafine-grained(UFG)Fe-31Mn-3Al-3Si(wt.%)austenitic TWIP steel was investigated by the use of advanced TEM technique with taking the plastic deformation mechanisms and their correlation w
The poor rate capability of battery-type anode is usually the bottleneck of the power-energy outputs of a hybrid alkaline metal ion capacitor.In this work,nitrogen and oxygen co-doped mesoporous carbon spheres with excellent rate performance and cycle sta