Coordinated grain boundary deformation governed nanograin annihilation in shear cycling

来源 :材料科学技术(英文版) | 被引量 : 0次 | 上传用户:supersonic
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Grain growth and shrinkage are essential to the thermal and mechanical stability of nanocrystalline metals,which are assumed to be governed by the coordinated deformation between neighboring grain boundaries(GBs)in the nanosized grains.However,the dynamics of such coordination has rarely been reported,especially in experiments.In this work,we systematically investigate the atomistic mechanism of coordinated GB deformation during grain shrinkage in an Au nanocrystal film through combined state-of-the-art in situ shear testing and atomistic simulations.We demonstrate that an embedded nanograin experiences shrinkage and eventually annihilation during a typical shear loading cycle.The continu-ous grain shrinkage is accommodated by the coordinated evolution of the surrounding GB network via dislocation-mediated migration,while the final grain annihilation proceeds through the sequen-tial dislocation-annihilation-induced grain rotation and merging of opposite GBs.Both experiments and simulations show that stress distribution and GB structure play important roles in the coordinated defor-mation of different GBs and control the grain shrinkage/annihilation under shear loading.Our findings establish a mechanistic relation between coordinated GB deformation and grain shrinkage,which reveals a general deformation phenomenon in nanocrystalline metals and enriches our understanding on the atomistic origin of structural stability in nanocrystalline metals under mechanical loading.
其他文献
Listeria monocytogenes(L.monocytogenes)is one of the top five dangerous foodborne pathogens which widely exists in most raw food and has approximately 30%mortality rate in high-risk groups.Food safety caused by foodborne pathogens is still a major problem
In this work,we report a facile dealloying strategy to tailor the surface state of nanoporous TiO2 towards high-efficiency sulfur host material for lithium-sulfur(Li-S)batteries.When used as a sulfur cathode material,the oxygen-deficient TiO2-x exhibits e
Electrohydrodynamic(EHD)3D printing of carbon-based materials in the form of orderly networks can have various applications.In this work,microscale carbon/nickel(C-Ni)composite electrodes with con-trolled porosity have been utilized in electrochemical ene
High-entropy oxides(HEOs)are considered promising thermal barrier coating(TBC)materials due to their unique thermophysical performances induced by the entropy effects.In this work,(La0.2Ce0.2Pr0.2Sm0.2Eu0.2)2Hf2O7 high entropy hafnate,as a thermal barrier
High-entropy alloys(HEAs)have attracted great research interest owing to their good combination of high strength and ductility at both room and cryogenic temperatures.However,expensive raw mate-rials are always added to overcome the strength-ductility tra
The microstructure and chemical compositions of the solid solution-treated Mg-3Nd-1Li-0.2Zn alloy were characterized using optical microscope,scanning electron microscope(SEM),transmission electron microscope(TEM),electron probe micro-analyzer(EPMA)and X-
The risk of leakage and low thermal conductivity severely hinder the wide application of phase change materials(PCMs).In this work,the high-density polyethylene/carbon nanotubes(HDPE/CNTs)porous scaffolds were successfully fabricated via a sacrificial tem
Metal and alloy nanoparticles synthesized by chemical reduction have attracted increasing attention due to their superior physical,chemical,and biological properties.However,most chemical synthesis processes rely on the use of harsh reducing agents and co
Aberration-corrected scanning transmission electron microscopy has been used to study a novel metastable phase,designated as β“phase,induced to form by electron beam irradiation in a Mg-9.8 wt.%Sn alloy.This phase is spherical in three dimensions,having a
Dissimilar welding of AZ31/ZK60 magnesium alloys with a thickness of 2 mm was successfully carried out by the double-sided friction stir spot welding with adjustable probes.A dissimilar joint bearing flat surfaces on both sides without a keyhole was obtai