Interface strengthening in dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium

来源 :材料科学技术(英文版) | 被引量 : 0次 | 上传用户:sina
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Dissimilar welding of AZ31/ZK60 magnesium alloys with a thickness of 2 mm was successfully carried out by the double-sided friction stir spot welding with adjustable probes.A dissimilar joint bearing flat surfaces on both sides without a keyhole was obtained and the shear failure load of 8.7±0.5 kN was reached.The role of the adjustable probes has been revealed in detail.In the center of the stir zone,the welding interface structure was heterogeneous around which some distinct oxides still remained,leading to a weak interface strength.On the contrary,the welding interface structure around the shoul-der/probe interface was homogeneous with no oxides giving rise to a strong interface strength,which is attributed to the severe material flow introduced by the adjustable probes.In addition,the vicinity outside the shoulder/probe interface,where the fracture occurred during the shear tensile tests,was also strengthened owing to the shearing and torsion by the adjustable probes.Therefore,a stable plug failure can be obtained and the joint properties can be improved.
其他文献
A novel Ti cored wire containing TiB2,Al60V40 and Ti6Al4V mixed powders was developed for wire-feed arc deposition of TiB/Ti composite coating,to enhance the hardness and wear resistance of Ti alloy.Results showed that after experiencing several chemical
Listeria monocytogenes(L.monocytogenes)is one of the top five dangerous foodborne pathogens which widely exists in most raw food and has approximately 30%mortality rate in high-risk groups.Food safety caused by foodborne pathogens is still a major problem
In this work,we report a facile dealloying strategy to tailor the surface state of nanoporous TiO2 towards high-efficiency sulfur host material for lithium-sulfur(Li-S)batteries.When used as a sulfur cathode material,the oxygen-deficient TiO2-x exhibits e
Electrohydrodynamic(EHD)3D printing of carbon-based materials in the form of orderly networks can have various applications.In this work,microscale carbon/nickel(C-Ni)composite electrodes with con-trolled porosity have been utilized in electrochemical ene
High-entropy oxides(HEOs)are considered promising thermal barrier coating(TBC)materials due to their unique thermophysical performances induced by the entropy effects.In this work,(La0.2Ce0.2Pr0.2Sm0.2Eu0.2)2Hf2O7 high entropy hafnate,as a thermal barrier
High-entropy alloys(HEAs)have attracted great research interest owing to their good combination of high strength and ductility at both room and cryogenic temperatures.However,expensive raw mate-rials are always added to overcome the strength-ductility tra
The microstructure and chemical compositions of the solid solution-treated Mg-3Nd-1Li-0.2Zn alloy were characterized using optical microscope,scanning electron microscope(SEM),transmission electron microscope(TEM),electron probe micro-analyzer(EPMA)and X-
The risk of leakage and low thermal conductivity severely hinder the wide application of phase change materials(PCMs).In this work,the high-density polyethylene/carbon nanotubes(HDPE/CNTs)porous scaffolds were successfully fabricated via a sacrificial tem
Metal and alloy nanoparticles synthesized by chemical reduction have attracted increasing attention due to their superior physical,chemical,and biological properties.However,most chemical synthesis processes rely on the use of harsh reducing agents and co
Aberration-corrected scanning transmission electron microscopy has been used to study a novel metastable phase,designated as β“phase,induced to form by electron beam irradiation in a Mg-9.8 wt.%Sn alloy.This phase is spherical in three dimensions,having a