论文部分内容阅读
目的为了解决复杂环境中多人姿态估计存在的定位和识别等问题,提高多人姿态估计的准确率,减少算法存在的大量冗余参数,提高姿态估计的运行速率,提出了基于批量归一化层(batch normalization, BN)通道剪枝的多人姿态估计算法(YOLOv3 prune pose estimator, YLPPE)。方法以目标检测算法YOLOv3(you only look once v3)和堆叠沙漏网络(stacked hourglass network, SHN)算法为基础,通过重叠度K-means算法修