论文部分内容阅读
间歇过程不等长时段数据直接影响数据驱动的多元统计分析时段建模精度,导致间歇过程的监控性能降低。针对间歇过程不等长时段数据问题,提出一种基于提升小波包变换(LWPT)和动态时间规整(DTW)算法的间歇过程不等长时段数据同步化方法。该方法引入LWPT对间歇过程不等长时段数据轨迹进行高低频的多级分解,充分提取数据轨迹的所有时频域信息;采用DTW算法对不同频段的系数矩阵进行同步化,并利用提升小波包逆变换对同步化后的系数矩阵进行合成,降低吉布斯现象对数据轨迹合成的影响,获得等长的时段轨迹,实现了间歇过程不等长时段数