结合混沌鸟群算法的阴极铜板表面缺陷检测

来源 :中国图象图形学报 | 被引量 : 1次 | 上传用户:jibbsb12
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的铜电解过程中常因电解液溶解气体过饱阻止铜离子析出而在铜板表面形成凸起,常由操作员目视对铜板表面质量进行鉴别以决定归类,针对人工判别电解阴极铜板表面质量准确度和效率都较低的问题,提出一种结合混沌鸟群算法的铜板表面凸起智能识别方法。方法为增强算法的全局搜索能力,引入鸟群算法;选取鸟群劣质个体交替进行混和动态步长位置更新增加种群多样性以免陷入局部最优;对铜板表面缺陷进行分析,提出基点生长法并结合形态学开操作消除铜板图像纹理以提高算法对凸起面积计算的准确性。将最佳熵阈值确定法(Kapur-Sahoo-W
其他文献
目的人脸图像蕴含着丰富的个人敏感信息,直接发布可能会造成个人隐私泄露。为了保护人脸图像中的隐私信息,提出3种基于矩阵分解与差分隐私技术相结合的人脸图像发布算法,即LRA(low rank-based private facial image release algorithm)、SRA(SVD-based private facial image release algorithm)和ESRA(e
目的图像的变化检测是视觉领域的一个重要问题,传统的变化检测对光照变化、相机位姿差异过于敏感,使得在真实场景中检测结果较差。鉴于卷积神经网络(convolutional neural networks,CNN)可以提取图像中的深度语义特征,提出一种基于多尺度深度特征融合的变化检测模型,通过提取并融合图像的高级语义特征来克服检测噪音。方法使用VGG(visual geometry group)16作为