基于深度学习的物体点云六维位姿估计方法

来源 :计算机工程 | 被引量 : 0次 | 上传用户:wulixx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
物体位姿估计是机器人在散乱环境中实现三维物体拾取的关键技术,然而目前多数用于物体位姿估计的深度学习方法严重依赖场景的RGB信息,从而限制了其应用范围。提出基于深度学习的六维位姿估计方法,在物理仿真环境下生成针对工业零件的数据集,将三维点云映射到二维平面生成深度特征图和法线特征图,并使用特征融合网络对散乱场景中的工业零件进行六维位姿估计。在仿真数据集和真实数据集上的实验结果表明,该方法相比传统点云位姿估计方法准确率更高、计算时间更短,且对于疏密程度不一致的点云以及噪声均具有更强的鲁棒性。
其他文献
在不完全连续干扰消除(SIC)条件下,对认知无线电-非正交多址混合系统中的次用户总传输速率进行研究,提出一种基于参数变换和KKT条件的功率分配算法。采用非正交多址方式使次用户接入授权信道,在主次用户服务质量、最大发射功率等约束条件下,通过参数变换对原约束条件进行改写设计新的优化问题,并利用KKT条件求解最优功率分配因子进而实现系统中次用户总传输速率的最大化。仿真结果表明,与CNPA算法和等功率分配算法相比,该算法可明显提高系统中次用户的总传输速率,并且对于不完全SIC具有更强的承受能力。
文章对新标准GB/T14272—2021《羽绒服装》中羽绒服装理化性能的变更进行解析,为面料供应商提供参考性建议及注意事项。
随着互联网上多媒体数据的爆炸式增长,单一模态的检索已经无法满足用户需求,跨模态检索应运而生。跨模态检索旨在以一种模态的数据去检索另一种模态的相关数据,其核心任务是数据特征提取和不同模态间数据的相关性度量。文中梳理了跨模态检索领域近期的研究进展,从传统方法、深度学习方法、手工特征的哈希编码方法以及深度学习的哈希编码方法等角度归纳论述了跨模态检索领域的研究成果。在此基础上,对比分析了各类算法在跨模态检索常用标准数据集上的性能。最后,分析了跨模态检索研究存在的问题,并对该领域未来发展趋势以及应用进行了展望。