论文部分内容阅读
物体位姿估计是机器人在散乱环境中实现三维物体拾取的关键技术,然而目前多数用于物体位姿估计的深度学习方法严重依赖场景的RGB信息,从而限制了其应用范围。提出基于深度学习的六维位姿估计方法,在物理仿真环境下生成针对工业零件的数据集,将三维点云映射到二维平面生成深度特征图和法线特征图,并使用特征融合网络对散乱场景中的工业零件进行六维位姿估计。在仿真数据集和真实数据集上的实验结果表明,该方法相比传统点云位姿估计方法准确率更高、计算时间更短,且对于疏密程度不一致的点云以及噪声均具有更强的鲁棒性。