基于无模型自适应预测控制的机械臂视觉伺服控制研究

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:zjzjzj13
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着计算机视觉的不断进步,视觉伺服技术被引入机械臂控制领域,成为机械臂控制领域研究的核心内容之一。机械臂在工作过程中通过摄像机获得图像信息,使得操作系统更加灵活,因此,机械臂视觉伺服控制系统具有非常重要的研究价值。本文以六自由度机械臂视觉伺服系统这种结构复杂的多入多出系统为研究对象,针对视觉模型参数和摄像机内部参数未知的问题,以多入多出紧格式无模型自适应控制算法为基础,对机械臂视觉伺服系统进行了研究,主要研究内容如下:首先,考虑到图像处理的结果直接影响到控制精度,研究了图像预处理、边缘检测和特征点提取方法,给出了基于图像处理的目标物体中心点像素坐标的确定方法。其次,为解决视觉伺服系统模型不确定性对控制系统性能的影响,提出了基于无模型自适应(Model Free Adaptive Control,MFAC)的机械臂视觉伺服控制方法。使用视觉伺服系统输入输出数据设计控制器,将目标物体的特征点信息和期望特征之间的差值作为反馈信息传递给控制器驱动机械臂运动,使得目标图像特征点像素坐标达到期望位置。仿真结果验证了无模型自适应视觉控制方法在视觉伺服系统模型不确定情况下的有效性。最后,为进一步提高系统的控制精度,本文提出了无模型自适应预测控制(Model Free Adaptive Predictive Control,MFAPC)的视觉伺服控制方法。通过在每一个时刻建立机械臂视觉伺服系统等价的动态线性化数据模型,利用机械臂视觉伺服系统输入输出数据估计系统的伪偏导数,同时应用预测控制算法计算最优控制量。仿真实验验证了无模型自适应视觉预测控制方法在无标定环境下和模型未知环境下的有效性。
其他文献
在OA系统运维过程中,某公司信息部门经常接到用户各式各样的需求。所有用户都想快速、完全实现自己的需求。由于时间、资金、人员数量等资源有限,考虑到诸多方面的要求,如何正确处理交付需求的先后顺序,就显得极为重要,这就是需求优先级。但是信息部门常常凭直观经验来判断需求优先级,有时会造成资源分配不合理、需求安排不科学,进而受到用户投诉,对年底的部门评比结果造成一定影响。为改善这种状况,就需要搭建一套判定需
目前,城市交通路口摄像头产生的海量交通数据可以应用于交通管理、智能安防等领域。因此,对特定车辆进行检索,即车辆重识别(Vehicle Re-ID)就变得十分重要。车辆重识别任务是指:在给定一张测试图像的前提下,找出跨摄像头拍摄的同一辆车的图像。2012年后,随着算力的大幅提升和海量数据的产出,深度学习方法在各个领域不断刷新着最佳性能的纪录,包括车辆重识别任务。尽管近年来车辆重识别的方法多样,但是少
在当前共享经济的时代下,共享汽车正作为一种绿色、经济、便捷的出行方式融入人们的生活。为了深入了解共享汽车整体运营特征,本文在现有研究基础上,选取共享汽车订单数据、兴趣点(POI)数据、天气数据作为研究数据基础,刻画共享汽车出行时空分布特征;通过构建POI密度指标负二项回归模型,着重分析兴趣点因素对共享汽车出行需求的影响关系,为运营商进行新站点的选取提供科学支撑;运用深度学习网络模型实现站点每日借还
伴随着信息时代潮流的推进,深度图像在物体检测、行为识别和场景建模等方面的应用越来越多。由于3D成像系统本身缺陷和外界干扰,采集的深度图像中往往带有孔洞,孔洞是限制深度图像实际应用的主要因素之一。目前大多数深度图像孔洞填充采用基于彩色图像引导的修复方法,复杂的采集设备和彩色图像与深度图像间的对齐精度一定程度上限制此类方法的应用。基于此背景,本文专注于基于单一深度图像信息的孔洞填充方法研究。论文取得了
运用基于心流理论的交互界面研究方法,针对骨折复健类应用程序的用户心流体验,以典型骨折复健类型——胫腓骨骨折复健为例,进行界面设计,以及完成配套智能可穿戴硬件的设计。通过对用户特征及其心流体验要素的分析,确立研究路线的可行性,梳理完整的用户体验交互流程,探讨用户的心流体验预期及达成心流体验的路径,得出符合目标界面效果的设计结论。在用户调研中,通过对其痛点的剖析,对用户骨折复健全流程的真实情况进行分类
基于深度卷积神经网络(Deep Convolutional Neural Network,DCNN)的算法在计算机视觉领域拥有至关重要的地位,相比与传统算法,其针对图像分类、目标检测、实例分割等任务均具有更高的准确率,成为近年来学术和工业界的主要研究方向。然而,由于DCNN固有的高计算负载、高参数量的属性,针对功耗、存储限制较为严苛的场景,实现高吞吐率、低延时的推理运算仍然面临诸多挑战。本论文提出
行人重识别(Person Re-Identification,简称Re ID),是计算机视觉领域的热点研究方向,主要解决跨摄像头跨场景下行人的识别与检索,具有重要的研究意义和广泛的应用前景。该技术亦可作为人脸识别技术的重要补充,对无法获取清晰人脸的行人进行跨摄像头连续跟踪。本文以人体关节姿态的图表示为辅助特征,联合深度学习和图推理,重点研究并解决行人重识别特征提取不充分、小尺度行人识别精度低和关键
支持矩阵机作为支持向量机的推广,是人工智能中的重要技术,被广泛的应用在分类和预测的问题中,如文本分类、图像识别、医疗诊断等等.这些实际问题中的数据天然是矩阵形式,其结构特征提供了数据的重要信息,因而以矩阵为变量的支持矩阵机问题的研究至关重要.支持矩阵机模型很好的考虑到了矩阵数据内部具有的相关性,其研究的主要困难在于目标函数中秩函数、0/1损失函数的非凸非连续性.目前已有的研究集中在矩阵数据的向量化
随着短视频、直播、云会议等对实时性要求较高的应用不断涌现,最小化延迟成为网络研究的方向和目标。主动队列管理对于改善网络拥塞、控制数据流延迟有着重要作用。然而传统网络的转发设备受硬件限制不支持用户自定义队列管理算法,但随着可编程网络等新型网络架构的出现,在数据平面通过编程接口管理网络节点上的资源(存储器、处理器和分组队列等)得以实现,主动队列管理技术得到进一步的发展,研究数据平面的队列管理对于改善网
目前,医药流通行业受到国家医药改革相关政策的影响,面临着在医药终端下单至送货到位的有限时间内,医药物流中心如何完成大量拆零订单的拣选作业,即如何提高拣选效率的困境。通过在实际中的应用,基于搬运机器人的“货到人”拣选系统已被证明是解决拆零拣选困境的重要手段之一。本文主要针对基于搬运机器人的“货到人”拣选系统中的订单问题进行研究,主要研究内容如下:首先针对基于搬运机器人的“货到人”拣选系统中,搬运通道